Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Discovery Inspired by nature: textured materials to aid industry and military: Innovation Corps team developed metals and plastic that repel water, capture sunlight and prevent ice build-up

Mool Gupta received one of the first NSF Innovation Corps awards.

Credit: University of Virginia
Mool Gupta received one of the first NSF Innovation Corps awards.

Credit: University of Virginia

Abstract:
The lotus leaf has a unique microscopic texture and wax-like coating that enables it to easily repel water. Taking his inspiration from nature, a University of Virginia professor has figured out a way to make metals and plastics that can do virtually the same thing.

Discovery Inspired by nature: textured materials to aid industry and military: Innovation Corps team developed metals and plastic that repel water, capture sunlight and prevent ice build-up

Arlington, VA | Posted on August 19th, 2013

Mool Gupta, Langley Distinguished Professor in the university's department of electrical and computer engineering, and director of the National Science Foundation's (NSF) Industry/University Cooperative Research Center for Lasers and Plasmas, has developed a method using high-powered lasers and nanotechnology to create a similar texture that repels water, captures sunlight and prevents the buildup of ice.

These textured materials can be used over large areas and potentially could have important applications in products where ice poses a danger, for example, in aviation, the automobile industry, the military, in protecting communication towers, blades that generate wind energy, bridges, roofs, ships, satellite dishes, and even snowboards.

In commercial and military aviation, for example, these materials could improve airline safety by making current de-icing procedures, which include scraping and applying chemicals, such as glycol, to the wings, unnecessary.

For residents in the frigid northeast, many of whom rely on satellite systems, "it could mean they won't lose their signal, and they won't have to go outside with a hammer and chisel and break off the ice," Gupta says.

The materials' ability to trap sunlight also could enhance the performance of solar cells.

Gupta and his research team first made a piece of textured metal that serves as a mold to mass-produce many pieces of plastic with the same micro-texture. The replication process is similar to the one used in manufacturing compact discs. The difference, of course, is that the CD master mold contains specific information, like a voice, whereas, "in our case we are not writing any information, we are creating a micro-texture," Gupta says.

"You create one piece of metal that has the texture," Gupta adds. "For multiple pieces of plastic with the texture, you use the one master made of metal to stamp out multiple pieces. Thus, whatever features are in your master are replicated in the special plastic. Once we create that texture, if you put a drop of water on the texture, the water rolls down and doesn't stick to it, just like a lotus leaf. We have created a human-made structure that repels water, just like the lotus leaf."

The process of making the metal with the special texture works like this: the scientists take high-powered lasers, with energy beams 20 million times higher than that of a laser pointer, for example, and focus the beams on a metal surface. The metal absorbs the laser light and heats to a melting temperature of about 1200 degrees Centigrade, or higher, a process that rearranges the surface material to form a microtexture.

"All of this happens in less than 0.1 millionth of a second," Gupta says. "The microtexture is self-organized. By scanning the focused laser beam, we achieve a large area of microtexture. The produced microtexture is used as a stamper to replicate microtexture in polymers. The stamper can be used many, many times, allowing a low cost manufacturing process. The generated microtextured polymer surface shows very high water repellency."

In the fall of 2011, Gupta was among the first group of scientists to receive a $50,000 NSF Innovation Corps (I-Corps) award, which supports a set of activities and programs that prepare scientists and engineers to extend their focus beyond the laboratory into the commercial world.

Such results may be translated through I-Corps into technologies with near-term benefits for the economy and society. It is a public-private partnership program that teaches grantees to identify valuable product opportunities that can emerge from academic research, and offers entrepreneurship training to faculty and student participants.

The other project members are Paul Caffrey, a doctoral candidate under Gupta's supervision, and Martin Skelly of Charleston, S.C., a veteran of banking in the former Soviet Union who serves as business mentor and is involved in new business investments.

The team participated in a three-day entrepreneurship workshop at Stanford University run by entrepreneurs from Silicon Valley. "We are still pursuing the commercial potential," Gupta says. "The idea is to look at what market can use this technology, how big the market is, and how long it will take to get into it."
-- Marlene Cimons, National Science Foundation

####

About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency created by Congress in 1950 "to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense…" With an annual budget of about $7.0 billion (FY 2012), we are the funding source for approximately 20 percent of all federally supported basic research conducted by America's colleges and universities. In many fields such as mathematics, computer science and the social sciences, NSF is the major source of federal backing.

For more information, please click here

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Discoveries

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Materials/Metamaterials

A View Through Wood Shows Futuristic Applications: Transparent wood made at UMD could create new windows, cars and solar panels May 5th, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Announcements

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Military

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Nanograft seeded with 3 cell types promotes blood vessel formation to speed wound healing April 27th, 2016

The light stuff: A brand-new way to produce electron spin currents - Colorado State University physicists are the first to demonstrate using non-polarized light to produce a spin voltage in a metal April 26th, 2016

Energy

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Nanoparticles present sustainable way to grow food crops May 1st, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Automotive/Transportation

A View Through Wood Shows Futuristic Applications: Transparent wood made at UMD could create new windows, cars and solar panels May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

New spin Seebeck thermoelectric device with higher conversion efficiency created April 26th, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Sports

What makes penguin feathers ice-proof February 24th, 2016

Imec and Cloudtag Collaborate on High Quality Frictionless Wearables for Lifestyle Coaching: Next-generation health and fitness tracker Cloudtag TrackTM launched at CES 2016 January 7th, 2016

New stretchable, wearable sensor made with chewing gum (video) December 2nd, 2015

Make mine a decaf: Breakthrough in knowledge of how nanoparticles grow: University of Leicester and CNRS researchers observe how nanoparticles grow when exposed to helium July 23rd, 2015

Aerospace/Space

Physicists detect the enigmatic spin momentum of light April 26th, 2016

Team builds first quantum cascade laser on silicon: Eliminates the need for an external light source for mid-infrared silicon photonic devices or photonic circuits April 21st, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Acclaimed Science Fiction Author Dr. Jerry Pournelle Wins the National Space Society Robert A. Heinlein Award April 13th, 2016

Industrial

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Novel anti-biofilm nano coating developed at Ben-Gurion U.: Offers significant anti-adhesive potential for a variety of medical and industrial applications April 25th, 2016

Model aids efforts to reduce cost of carbon nanostructures for industry, research April 5th, 2016

Molecular-scale ALD discovery could have industrial-sized impact: New atomic layer deposition technique reduces waste March 31st, 2016

Photonics/Optics/Lasers

Molybdenum disulfide holds promise for light absorption: Rice researchers probe light-capturing properties of atomically thin MoS2 May 5th, 2016

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Construction

Nanotechnology is changing everything from medicine to self-healing buildings: Nanotechnology is so small it's measured in billionths of metres, and it is revolutionising every aspect of our lives April 2nd, 2016

New type of nanowires, built with natural gas heating: UNIST research team developed a new simple nanowire manufacturing technique February 1st, 2016

SiC Nanoparticles Applied to Modify Properties of Portland Cement January 14th, 2016

Application of Graphene Structures to Produce Fireproof, Anticorrosive Nanocoatings October 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic