Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Discovery Inspired by nature: textured materials to aid industry and military: Innovation Corps team developed metals and plastic that repel water, capture sunlight and prevent ice build-up

Mool Gupta received one of the first NSF Innovation Corps awards.

Credit: University of Virginia
Mool Gupta received one of the first NSF Innovation Corps awards.

Credit: University of Virginia

Abstract:
The lotus leaf has a unique microscopic texture and wax-like coating that enables it to easily repel water. Taking his inspiration from nature, a University of Virginia professor has figured out a way to make metals and plastics that can do virtually the same thing.

Discovery Inspired by nature: textured materials to aid industry and military: Innovation Corps team developed metals and plastic that repel water, capture sunlight and prevent ice build-up

Arlington, VA | Posted on August 19th, 2013

Mool Gupta, Langley Distinguished Professor in the university's department of electrical and computer engineering, and director of the National Science Foundation's (NSF) Industry/University Cooperative Research Center for Lasers and Plasmas, has developed a method using high-powered lasers and nanotechnology to create a similar texture that repels water, captures sunlight and prevents the buildup of ice.

These textured materials can be used over large areas and potentially could have important applications in products where ice poses a danger, for example, in aviation, the automobile industry, the military, in protecting communication towers, blades that generate wind energy, bridges, roofs, ships, satellite dishes, and even snowboards.

In commercial and military aviation, for example, these materials could improve airline safety by making current de-icing procedures, which include scraping and applying chemicals, such as glycol, to the wings, unnecessary.

For residents in the frigid northeast, many of whom rely on satellite systems, "it could mean they won't lose their signal, and they won't have to go outside with a hammer and chisel and break off the ice," Gupta says.

The materials' ability to trap sunlight also could enhance the performance of solar cells.

Gupta and his research team first made a piece of textured metal that serves as a mold to mass-produce many pieces of plastic with the same micro-texture. The replication process is similar to the one used in manufacturing compact discs. The difference, of course, is that the CD master mold contains specific information, like a voice, whereas, "in our case we are not writing any information, we are creating a micro-texture," Gupta says.

"You create one piece of metal that has the texture," Gupta adds. "For multiple pieces of plastic with the texture, you use the one master made of metal to stamp out multiple pieces. Thus, whatever features are in your master are replicated in the special plastic. Once we create that texture, if you put a drop of water on the texture, the water rolls down and doesn't stick to it, just like a lotus leaf. We have created a human-made structure that repels water, just like the lotus leaf."

The process of making the metal with the special texture works like this: the scientists take high-powered lasers, with energy beams 20 million times higher than that of a laser pointer, for example, and focus the beams on a metal surface. The metal absorbs the laser light and heats to a melting temperature of about 1200 degrees Centigrade, or higher, a process that rearranges the surface material to form a microtexture.

"All of this happens in less than 0.1 millionth of a second," Gupta says. "The microtexture is self-organized. By scanning the focused laser beam, we achieve a large area of microtexture. The produced microtexture is used as a stamper to replicate microtexture in polymers. The stamper can be used many, many times, allowing a low cost manufacturing process. The generated microtextured polymer surface shows very high water repellency."

In the fall of 2011, Gupta was among the first group of scientists to receive a $50,000 NSF Innovation Corps (I-Corps) award, which supports a set of activities and programs that prepare scientists and engineers to extend their focus beyond the laboratory into the commercial world.

Such results may be translated through I-Corps into technologies with near-term benefits for the economy and society. It is a public-private partnership program that teaches grantees to identify valuable product opportunities that can emerge from academic research, and offers entrepreneurship training to faculty and student participants.

The other project members are Paul Caffrey, a doctoral candidate under Gupta's supervision, and Martin Skelly of Charleston, S.C., a veteran of banking in the former Soviet Union who serves as business mentor and is involved in new business investments.

The team participated in a three-day entrepreneurship workshop at Stanford University run by entrepreneurs from Silicon Valley. "We are still pursuing the commercial potential," Gupta says. "The idea is to look at what market can use this technology, how big the market is, and how long it will take to get into it."
-- Marlene Cimons, National Science Foundation

####

About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency created by Congress in 1950 "to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense…" With an annual budget of about $7.0 billion (FY 2012), we are the funding source for approximately 20 percent of all federally supported basic research conducted by America's colleges and universities. In many fields such as mathematics, computer science and the social sciences, NSF is the major source of federal backing.

For more information, please click here

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Govt.-Legislation/Regulation/Funding/Policy

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Discoveries

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Materials/Metamaterials

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Peering into private life of atomic clusters -- using the world's tiniest test tubes September 6th, 2018

Cannibalistic materials feed on themselves to grow new nanostructures September 1st, 2018

Environmentally friendly photoluminescent nanoparticles for more vivid display colors: Osaka University-led researchers created a new type of light-emitting nanoparticle that is made of ternary non-toxic semiconductors to help create displays and LED lighting with better colors t August 29th, 2018

Announcements

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Military

Ultracold atoms used to verify 1963 prediction about 1D electrons: Rice University, University of Geneva study focuses on theory that's increasingly relevant to chipmakers September 5th, 2018

Neutrophil nanosponges soak up proteins that promote rheumatoid arthritis September 3rd, 2018

Virginia Tech researchers develop novel process to 3D print one of the strongest materials on Earth August 23rd, 2018

Biomimetic micro/nanoscale fiber reinforced composites August 10th, 2018

Energy

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

S, N co-doped carbon nanotube-encapsulated CoS2@Co: Efficient and stable catalysts for water splitting September 10th, 2018

September 5th, 2018

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

Automotive/Transportation

A Comprehensive Guide: The Future of Nanotechnology September 13th, 2018

Mirrorcle Demonstrates MEMS-based Programmable Light Source at CES and PW18 August 30th, 2018

Strategic Materials Conference 2018 Highlights “Materials Shaping the Future of Electronics” July 30th, 2018

Researchers use nanotechnology to improve the accuracy of measuring devices July 24th, 2018

Sports

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Graphene-based desiccant offers super dry solution to moisture control June 1st, 2018

Synthetic “Melanin” Could Act as a Natural Sunscreen: The pigmentlike nanoparticles could protect cells from the sun’s damaging rays July 1st, 2017

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Aerospace/Space

Virginia Tech researchers develop novel process to 3D print one of the strongest materials on Earth August 23rd, 2018

Kavli Lectures: New vision of nanomaterial synthesis and light-fueled space travel August 8th, 2018

Nanoscience and the future of healthcare kick off first day of ACS national meeting in Boston: Presidential events highlight safety, diversity and groundbreaking research August 2nd, 2018

Disability Can Be a Superpower in Space Disabled astronauts offer unique solutions to emergencies in space May 17th, 2018

Industrial

Graphene nanotubes outperform ammonium salts and carbon black in PU applications September 11th, 2018

Carbon in color: First-ever colored thin films of nanotubes created: A method developed at Aalto University, Finland, can produce large quantities of pristine single-walled carbon nanotubes in select shades of the rainbow; the secret is a fine-tuned fabrication process -- and a s August 29th, 2018

Connecting the (Nano) Dots: NIST Says Big-Picture Thinking Can Advance Nanoparticle Manufacturing August 22nd, 2018

A colossal breakthrough for topological spintronics: BiSb expands the potential of topological insulators for ultra-low-power electronic devices August 2nd, 2018

Photonics/Optics/Lasers

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Laser sintering optimized for printed electronics: New study sheds (laser) light on the best means of laying down thin-film circuitry September 13th, 2018

Construction

A Comprehensive Guide: The Future of Nanotechnology September 13th, 2018

Weak hydrogen bonds key to strong, tough infrastructure: Rice University lab simulates polymer-cement composites to find strongest, toughest materials January 29th, 2018

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Corrosion in real time: UCSB researchers get a nanoscale glimpse of crevice and pitting corrosion as it happens September 14th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project