Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > First time: NJIT researchers examine dynamics of liquid metal particles at nanoscale

Two NJIT researchers, Shahriar Afkhami (left) and Lou Kondic (right), have demonstrated that using a continuum-based approach, they can explain the dynamics of liquid metal particles on a substrate of a nanoscale.

Credit: NJIT
Two NJIT researchers, Shahriar Afkhami (left) and Lou Kondic (right), have demonstrated that using a continuum-based approach, they can explain the dynamics of liquid metal particles on a substrate of a nanoscale.

Credit: NJIT

Abstract:
Two NJIT researchers have demonstrated that using a continuum-based approach, they can explain the dynamics of liquid metal particles on a substrate of a nanoscale. "Numerical simulation of ejected molten metal nanoparticles liquified by laser irradiation: Interplay of geometry and dewetting," appeared in Physical Review Letters (July 16, 2013).

First time: NJIT researchers examine dynamics of liquid metal particles at nanoscale

Newark, NJ | Posted on August 15th, 2013

The evolution of fluid drops deposited on solid substrates has been a focus of large research effort for decades, said co-author Shahriar Afkhami, an assistant professor in the NJIT Department of Mathematical Sciences. This effort has become particularly extensive on the nanoscale, due to the relevance of nanostructures in a variety of fields, ranging from DNA sequencing to plasmonics and nano magnetism. And the research also applies to liquid crystal displays and solar panel designs."

In this work, Afkhami with NJIT Professor Lou Kondic, also in the Department of Mathematical Sciences, studied the liquid metal nanostructures placed on solid substrates. The study is of direct relevance to self- and directed-assembly of metal nanoparticles on surfaces. For example, the size and distribution of metallic particles strongly affects the yield of solar cell devices, Afkhami said.

In this work, however, the researchers demonstrate that using a continuum-based approach is appropriate on the nanoscale, where the basic assumptions of continuum fluid mechanics are pushed to the limits. The pair's research is the first attempt to utilize state-of-the-art simulations based on continuum fluid mechanics to explain the dynamics of liquid metal particles on a substrate on the nanoscale.

"We demonstrated that continuum simulations provide a good qualitative agreement with atomistic simulations on the length scales in the range of 1-10 nm and with the physical experiments length scales measured in the range of 100 nanometers," added Kondic.

Kondic is involved in the mathematical modeling and simulating of granular materials, as well as in development of numerical methods for highly nonlinear partial differential equations related to the flows of thin liquid films. In 2005, Kondic received a Fulbright Foundation grant and traveled to Argentina to study the dynamics of non-Newtonian liquid films involving contact lines. He currently leads four federally funded projects totaling more than $800,000.

Afkhami uses computational and mathematical modeling to help researchers better understand a range of real-life engineering phenomena. His work includes examining biomedical systems, polymers and plastics, microfluidics and nano-materials. His research looks for the existence of solutions and issues involving fluid flows from stability to asymptotic behavior.

Afkhami's current research project is to numerically discover a better way to understand the dynamics of mixtures of fluids. The effort will tie into his new three-year NSF $252,000 grant (2013-16) to develop a state-of-the-art computational framework for polymeric liquids. The fruits of this labor will eventually have a broad effect in complex applications, such as how blood and other bodily fluids flow in microfluidic devices as well as finding better ways to improve the flow of emulsions when blending or processing polymers.

####

About New Jersey Institute of Technology
NJIT, New Jersey's science and technology university, enrolls more than 10,000 students pursuing bachelor's, master's and doctoral degrees in 120 programs. The university consists of six colleges: Newark College of Engineering, College of Architecture and Design, College of Science and Liberal Arts, School of Management, College of Computing Sciences and Albert Dorman Honors College. U.S. News & World Report's 2012 Annual Guide to America's Best Colleges ranked NJIT in the top tier of national research universities. NJIT is internationally recognized for being at the edge in knowledge in architecture, applied mathematics, wireless communications and networking, solar physics, advanced engineered particulate materials, nanotechnology, neural engineering and e-learning. Many courses and certificate programs, as well as graduate degrees, are available online through the Division of Continuing Professional Education.

For more information, please click here

Contacts:
Sheryl Weinstein
973-596-3436

Copyright © New Jersey Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultrasensitive sensor using N-doped graphene July 26th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Microfluidics/Nanofluidics

Researchers invent 'smart' thread that collects diagnostic data when sutured into tissue: Advances could pave way for new generation of implantable and wearable diagnostics July 18th, 2016

Droplets finally all the same size -- in a nanodroplet library June 20th, 2016

Display technology/LEDs/SS Lighting/OLEDs

Researchers develop faster, precise silica coating process for quantum dot nanorods July 12th, 2016

Integrated trio of 2-D nanomaterials unlocks graphene electronics applications: Voltage-controlled oscillator developed at UC Riverside could be used in thousands of applications from computers to wearable technologies July 7th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Govt.-Legislation/Regulation/Funding/Policy

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Discoveries

Ultrasensitive sensor using N-doped graphene July 26th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

Materials/Metamaterials

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Announcements

Ultrasensitive sensor using N-doped graphene July 26th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Ultrasensitive sensor using N-doped graphene July 26th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Energy

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

The future of perovskite solar cells has just got brighter -- come rain or shine: Korean researchers at POSTECH have succeeded in developing high-efficiency perovskite solar cells that retain excellent performance over two months in a very humid condition July 21st, 2016

Solar/Photovoltaic

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

The future of perovskite solar cells has just got brighter -- come rain or shine: Korean researchers at POSTECH have succeeded in developing high-efficiency perovskite solar cells that retain excellent performance over two months in a very humid condition July 21st, 2016

Scientists develop way to upsize nanostructures into light, flexible 3-D printed materials: Virginia Tech, Livermore National Lab researchers develop hierarchical 3-D printed metallic materials July 20th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic