Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > First time: NJIT researchers examine dynamics of liquid metal particles at nanoscale

Two NJIT researchers, Shahriar Afkhami (left) and Lou Kondic (right), have demonstrated that using a continuum-based approach, they can explain the dynamics of liquid metal particles on a substrate of a nanoscale.

Credit: NJIT
Two NJIT researchers, Shahriar Afkhami (left) and Lou Kondic (right), have demonstrated that using a continuum-based approach, they can explain the dynamics of liquid metal particles on a substrate of a nanoscale.

Credit: NJIT

Abstract:
Two NJIT researchers have demonstrated that using a continuum-based approach, they can explain the dynamics of liquid metal particles on a substrate of a nanoscale. "Numerical simulation of ejected molten metal nanoparticles liquified by laser irradiation: Interplay of geometry and dewetting," appeared in Physical Review Letters (July 16, 2013).

First time: NJIT researchers examine dynamics of liquid metal particles at nanoscale

Newark, NJ | Posted on August 15th, 2013

The evolution of fluid drops deposited on solid substrates has been a focus of large research effort for decades, said co-author Shahriar Afkhami, an assistant professor in the NJIT Department of Mathematical Sciences. This effort has become particularly extensive on the nanoscale, due to the relevance of nanostructures in a variety of fields, ranging from DNA sequencing to plasmonics and nano magnetism. And the research also applies to liquid crystal displays and solar panel designs."

In this work, Afkhami with NJIT Professor Lou Kondic, also in the Department of Mathematical Sciences, studied the liquid metal nanostructures placed on solid substrates. The study is of direct relevance to self- and directed-assembly of metal nanoparticles on surfaces. For example, the size and distribution of metallic particles strongly affects the yield of solar cell devices, Afkhami said.

In this work, however, the researchers demonstrate that using a continuum-based approach is appropriate on the nanoscale, where the basic assumptions of continuum fluid mechanics are pushed to the limits. The pair's research is the first attempt to utilize state-of-the-art simulations based on continuum fluid mechanics to explain the dynamics of liquid metal particles on a substrate on the nanoscale.

"We demonstrated that continuum simulations provide a good qualitative agreement with atomistic simulations on the length scales in the range of 1-10 nm and with the physical experiments length scales measured in the range of 100 nanometers," added Kondic.

Kondic is involved in the mathematical modeling and simulating of granular materials, as well as in development of numerical methods for highly nonlinear partial differential equations related to the flows of thin liquid films. In 2005, Kondic received a Fulbright Foundation grant and traveled to Argentina to study the dynamics of non-Newtonian liquid films involving contact lines. He currently leads four federally funded projects totaling more than $800,000.

Afkhami uses computational and mathematical modeling to help researchers better understand a range of real-life engineering phenomena. His work includes examining biomedical systems, polymers and plastics, microfluidics and nano-materials. His research looks for the existence of solutions and issues involving fluid flows from stability to asymptotic behavior.

Afkhami's current research project is to numerically discover a better way to understand the dynamics of mixtures of fluids. The effort will tie into his new three-year NSF $252,000 grant (2013-16) to develop a state-of-the-art computational framework for polymeric liquids. The fruits of this labor will eventually have a broad effect in complex applications, such as how blood and other bodily fluids flow in microfluidic devices as well as finding better ways to improve the flow of emulsions when blending or processing polymers.

####

About New Jersey Institute of Technology
NJIT, New Jersey's science and technology university, enrolls more than 10,000 students pursuing bachelor's, master's and doctoral degrees in 120 programs. The university consists of six colleges: Newark College of Engineering, College of Architecture and Design, College of Science and Liberal Arts, School of Management, College of Computing Sciences and Albert Dorman Honors College. U.S. News & World Report's 2012 Annual Guide to America's Best Colleges ranked NJIT in the top tier of national research universities. NJIT is internationally recognized for being at the edge in knowledge in architecture, applied mathematics, wireless communications and networking, solar physics, advanced engineered particulate materials, nanotechnology, neural engineering and e-learning. Many courses and certificate programs, as well as graduate degrees, are available online through the Division of Continuing Professional Education.

For more information, please click here

Contacts:
Sheryl Weinstein
973-596-3436

Copyright © New Jersey Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Display technology/LEDs/SS Lighting/OLEDs

Statement by QD Vision regarding European Parliament’s Vote on Cadmium-Based Quantum Dots May 20th, 2015

ORNL demonstrates first large-scale graphene fabrication May 14th, 2015

CLAIRE brings electron microscopy to soft materials: Berkeley researchers develop breakthrough technique for noninvasive nanoscale imaging May 14th, 2015

Microfluidics/Nanofluidics

What makes cancer cells spread? New device offers clues May 19th, 2015

Microchip captures clusters of circulating tumor cells -- NIH study May 18th, 2015

Govt.-Legislation/Regulation/Funding/Policy

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Discoveries

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Materials/Metamaterials

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Announcements

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Energy

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Solar/Photovoltaic

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Wearables may get boost from boron-infused graphene: Rice U. researchers flex muscle of laser-written microsupercapacitors May 18th, 2015

Random nanowire configurations increase conductivity over heavily ordered configurations May 16th, 2015

ORNL demonstrates first large-scale graphene fabrication May 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project