Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > First time: NJIT researchers examine dynamics of liquid metal particles at nanoscale

Two NJIT researchers, Shahriar Afkhami (left) and Lou Kondic (right), have demonstrated that using a continuum-based approach, they can explain the dynamics of liquid metal particles on a substrate of a nanoscale.

Credit: NJIT
Two NJIT researchers, Shahriar Afkhami (left) and Lou Kondic (right), have demonstrated that using a continuum-based approach, they can explain the dynamics of liquid metal particles on a substrate of a nanoscale.

Credit: NJIT

Abstract:
Two NJIT researchers have demonstrated that using a continuum-based approach, they can explain the dynamics of liquid metal particles on a substrate of a nanoscale. "Numerical simulation of ejected molten metal nanoparticles liquified by laser irradiation: Interplay of geometry and dewetting," appeared in Physical Review Letters (July 16, 2013).

First time: NJIT researchers examine dynamics of liquid metal particles at nanoscale

Newark, NJ | Posted on August 15th, 2013

The evolution of fluid drops deposited on solid substrates has been a focus of large research effort for decades, said co-author Shahriar Afkhami, an assistant professor in the NJIT Department of Mathematical Sciences. This effort has become particularly extensive on the nanoscale, due to the relevance of nanostructures in a variety of fields, ranging from DNA sequencing to plasmonics and nano magnetism. And the research also applies to liquid crystal displays and solar panel designs."

In this work, Afkhami with NJIT Professor Lou Kondic, also in the Department of Mathematical Sciences, studied the liquid metal nanostructures placed on solid substrates. The study is of direct relevance to self- and directed-assembly of metal nanoparticles on surfaces. For example, the size and distribution of metallic particles strongly affects the yield of solar cell devices, Afkhami said.

In this work, however, the researchers demonstrate that using a continuum-based approach is appropriate on the nanoscale, where the basic assumptions of continuum fluid mechanics are pushed to the limits. The pair's research is the first attempt to utilize state-of-the-art simulations based on continuum fluid mechanics to explain the dynamics of liquid metal particles on a substrate on the nanoscale.

"We demonstrated that continuum simulations provide a good qualitative agreement with atomistic simulations on the length scales in the range of 1-10 nm and with the physical experiments length scales measured in the range of 100 nanometers," added Kondic.

Kondic is involved in the mathematical modeling and simulating of granular materials, as well as in development of numerical methods for highly nonlinear partial differential equations related to the flows of thin liquid films. In 2005, Kondic received a Fulbright Foundation grant and traveled to Argentina to study the dynamics of non-Newtonian liquid films involving contact lines. He currently leads four federally funded projects totaling more than $800,000.

Afkhami uses computational and mathematical modeling to help researchers better understand a range of real-life engineering phenomena. His work includes examining biomedical systems, polymers and plastics, microfluidics and nano-materials. His research looks for the existence of solutions and issues involving fluid flows from stability to asymptotic behavior.

Afkhami's current research project is to numerically discover a better way to understand the dynamics of mixtures of fluids. The effort will tie into his new three-year NSF $252,000 grant (2013-16) to develop a state-of-the-art computational framework for polymeric liquids. The fruits of this labor will eventually have a broad effect in complex applications, such as how blood and other bodily fluids flow in microfluidic devices as well as finding better ways to improve the flow of emulsions when blending or processing polymers.

####

About New Jersey Institute of Technology
NJIT, New Jersey's science and technology university, enrolls more than 10,000 students pursuing bachelor's, master's and doctoral degrees in 120 programs. The university consists of six colleges: Newark College of Engineering, College of Architecture and Design, College of Science and Liberal Arts, School of Management, College of Computing Sciences and Albert Dorman Honors College. U.S. News & World Report's 2012 Annual Guide to America's Best Colleges ranked NJIT in the top tier of national research universities. NJIT is internationally recognized for being at the edge in knowledge in architecture, applied mathematics, wireless communications and networking, solar physics, advanced engineered particulate materials, nanotechnology, neural engineering and e-learning. Many courses and certificate programs, as well as graduate degrees, are available online through the Division of Continuing Professional Education.

For more information, please click here

Contacts:
Sheryl Weinstein
973-596-3436

Copyright © New Jersey Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Molecular Lego blocks: Chemical data mining boosts search for new organic semiconductors February 15th, 2019

The smallest skeletons in the marine world observed in 3D by synchrotron techniques February 15th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Display technology/LEDs/SS Lighting/OLEDs

Molecular Lego blocks: Chemical data mining boosts search for new organic semiconductors February 15th, 2019

CEA-Leti Combines Integrated Optics and Holography In Novel Lens-Free, Augmented Reality Technology: Approach Eliminates the Need for Optical Systems and Combiners in AR; Will Be Presented at SPIE Photonics West 2019 February 6th, 2019

Microfluidics/Nanofluidics

WSU researchers develop new technique to understand biology at the nanoscale November 7th, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Govt.-Legislation/Regulation/Funding/Policy

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Sensitive sensor detects Down syndrome DNA February 14th, 2019

Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019

Discoveries

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Molecular Lego blocks: Chemical data mining boosts search for new organic semiconductors February 15th, 2019

The smallest skeletons in the marine world observed in 3D by synchrotron techniques February 15th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Materials/Metamaterials

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019

Using artificial intelligence to engineer materials' properties: New system of 'strain engineering' can change a material's optical, electrical, and thermal properties February 11th, 2019

Sound and light trapped by disorder February 8th, 2019

Announcements

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Spintronics by 'straintronics': Switching superferromagnetism with electric-field induced strain February 15th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Energy

Molecular Lego blocks: Chemical data mining boosts search for new organic semiconductors February 15th, 2019

Helping smartphones hold their charge longer February 6th, 2019

Current generation via quantum proton transfer February 1st, 2019

A powerful catalyst for electrolysis of water that could help harness renewable energy January 25th, 2019

Solar/Photovoltaic

Self-assembling nanomaterial offers pathway to more efficient, affordable harnessing of solar power: The new materials produce a singlet fission reaction that creates more and extends the life of harvestable electronic charges January 24th, 2019

Shelley Claridge, an assistant professor at Purdue University, is leading research to improve electronic and energy conversion devices. (Image by Vincent Walter) January 24th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Power stations driven by light: More efficient solar cells imitate photosynthesis January 16th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project