Home > Press > A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites
![]() |
a Operation diagram of the HAAPP strategy; b Digital photographs of the sample in each step; c Mechanism description about the growth processes of the HAAPP strategy; d LaMer model for description of the crystal growth processes; Digital photographs of the samples e once adding concentrated HCl and f after shaking for ~5 min; g Comparison of products with (left) and without (right) UV irradiation during synthesis; Digital photographs of the products obtained by mass preparation under h room light and i 365 nm UV light CREDIT by Huanxin Yang, Xiangxiang Chen, Yiyue Chu, Changjiu Sun, Haolin Lu, Mingjian Yuan, Yuhai Zhang, Guankui Long, Libing Zhang and Xiyan Li |
Abstract:
In recent years, lead-free perovskite materials, represented by Cs2NaInCl6, have achieved a rapid breakthrough of luminous quantum yield from zero to near-unity by Ag/Na and In/Bi alloying schemes. Thanks to the self-trapping exciton, Cs2Na1-xAgxIn1-yBiyCl6 usually exhibit eyes-friendly luminescence behavior of full coverage of visible spectrum, thus attracts people's attention. Moreover, the warm-white light emission of a single component avoids the problem of light reabsorption among multiple components, which is easy to occur in the previous "blue + yellow" or "blue + green + red" schemes. These remarkable characteristics make lead-free perovskites highly commercially useful in scenarios such as LEDs lighting or LCD white-light backboards.
On the basis of remarkable luminous quantum yield, it is a prerequisite for commercialization to seek a synthesis strategy that can simultaneously achieve multiple ideal conditions such as mass production, rapid reaction rate, eco-friendliness, low cost and thermal- or pressure-free, etc. Traditional high temperature solid-state reaction and hydrothermal methods generally show unsafe high reaction temperature (or high pressure) and hour-scale time cost. In contrast, the recrystallization method based on liquid phase reaction generally exhibit more rapid nucleation growth. Unfortunately, it is limited by the solubility of raw materials (such as Ag sources, etc.), which may lead to a large amount of solvent consumption, increasing the cost of preparation. Therefore, to explore a synthetic strategy that can meet the above requirements has become one of the difficult problems to realize the commercialization of lead-free perovskite materials.
In a new paper published in Light: Science & Applications, a team of scientists, led by Prof. Xiyan Li from Nankai University and co-workers have proposed a universal HAAPP strategy for quick and mass preparation for lead-free perovskite microcrystals. Interestingly, they ignored the solubility and prepared 1 mmol double perovskite microcrystals by using only 1-2 mL concentrated HCl. The novel HAAPP strategy could accomplish the industrialization goals of thermal-, pressure-free, eco-friendliness, short-time, low-cost and high product yield (~90%), simultaneously. In addition to Cs2Na1-xAgxIn1-yBiyCl6, the proposed HAAPP strategy can be used to prepare other lead-free perovskites with different structures, such as Cs2ZrCl6, CsMnCl3, Cs4MnBi2Cl12 and Cs2InCl5·H2O, etc. More intriguingly, this strategy can be further extended to Br- or I-based perovskites, such as Cs2AgBiBr6 or Cs3Bi2I9. The HAAPP strategy with wide applicability is expected to provide a reliable reference for the futural preparation of new materials. These scientists summarize the HAAPP strategy:
“We design the HAAPP strategy for three purposes in one: (1) to provide a rapid mass production scheme for the industrialization of lead-free perovskite materials; (2) to provide a safe, reliable and widely supported method for scientific research; (3) to provide a new train of thought about the mechanism understanding of the conventional hydrothermal and recrystallization methods.”
“In our HAAPP strategy, the continuous crystallization accompanies the gradual release of free ions from raw materials with low solubility, promoting the chemical equilibrium of the reversible reaction to the free ions’ direction continuously until the raw materials are exhausted. This unique powder-to-powder transition will provide a new train of thought about the mechanism understanding of the conventional recrystallization method, that is, complete dissolution of the raw materials seems not strictly necessary.”
“The concentrated hydrochloric acid, as the only solvent used, exhibits multiple functions in our HAAPP strategy, which are summarized as follows:
1) Provide a liquid-state environment for rapid reaction;
2) Provide a poor solubility for products to improve the chemical yield;
3) Improve the luminescence efficiency by anion passivation;
4) Guide the product growth direction to ensure the pure phase of products.
The HAAPP strategy proposed in this paper can simultaneously meet the ideal preparation conditions of mass production, rapid response, eco-friendliness, low cost, thermal- and pressure-free, etc., which provides industrialization foundation for the application of lead-free perovskite in LEDs lighting or LCD backlight plate. Various ions-doping for luminous regulation also indicates that the HAAPP strategy is expected to become another new preparation scheme after solid-state, hydrothermal and recrystallization methods. In addition, the induction of reaction mechanism and the summary of HCl functions will provide a powerful reference for the specific growth process analysis of hydrothermal method.” The scientists forecast.
####
For more information, please click here
Contacts:
Media Contact
Yaobiao Li
Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS
Office: 86-431-861-76851
Expert Contact
Xiyan Li
Nankai University, China
Copyright © Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023
Breakthrough in the optical properties of MXenes - two-dimensional heterostructures provide new ideas May 12th, 2023
Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023
Display technology/LEDs/SS Lighting/OLEDs
Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023
Perovskites
Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023
Efficient heat dissipation perovskite lasers using a high-thermal-conductivity diamond substrate April 14th, 2023
Possible Futures
Researchers at Purdue discover superconductive images are actually 3D and disorder-driven fractals May 12th, 2023
Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023
Breakthrough in the optical properties of MXenes - two-dimensional heterostructures provide new ideas May 12th, 2023
Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023
Discoveries
Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023
Breakthrough in the optical properties of MXenes - two-dimensional heterostructures provide new ideas May 12th, 2023
Materials/Metamaterials
Nanobiotechnology: How Nanomaterials Can Solve Biological and Medical Problems April 14th, 2023
New Developments in Biosensor Technology: From Nanomaterials to Cancer Detection April 14th, 2023
Diamond cut precision: University of Illinois to develop diamond sensors for neutron experiment and quantum information science April 14th, 2023
Graphene grows – and we can see it March 24th, 2023
Announcements
Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023
Breakthrough in the optical properties of MXenes - two-dimensional heterostructures provide new ideas May 12th, 2023
Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Researchers at Purdue discover superconductive images are actually 3D and disorder-driven fractals May 12th, 2023
Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023
Breakthrough in the optical properties of MXenes - two-dimensional heterostructures provide new ideas May 12th, 2023
Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023
Energy
Researchers at Purdue discover superconductive images are actually 3D and disorder-driven fractals May 12th, 2023
Channeling mechanical energy in a preferred direction April 14th, 2023
Make them thin enough, and antiferroelectric materials become ferroelectric February 10th, 2023
Solar/Photovoltaic
Stability of perovskite solar cells reaches next milestone January 27th, 2023
New method addresses problem with perovskite solar cells: NREL researchers provide growth approach that boosts efficiency, stability December 29th, 2022
New insights into energy loss open doors for one up-and-coming solar tech November 18th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |