Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Origins and uses of wrinkles, creases, folds

 Three ruga states and how they form	A phase diagram shows the amount of compressive strain needed to create wrinkles, creases and folds in rubbery materials. The purple area denotes the wrinkle state and the aqua areas are two crease states. The spot marked R denotes folding.	Credit: Kim lab/Brown University
Three ruga states and how they form A phase diagram shows the amount of compressive strain needed to create wrinkles, creases and folds in rubbery materials. The purple area denotes the wrinkle state and the aqua areas are two crease states. The spot marked R denotes folding.

Credit: Kim lab/Brown University

Abstract:
New research into the origins of and structural differences between wrinkles, creases, and folds could have applications in many fields, from flexible electronic devices to dermatology to flexible sheets that become sticky when stretched. Findings from a Brown University research group appear in Proceedings of the Royal Society A.

Origins and uses of wrinkles, creases, folds

Providence, RI | Posted on July 18th, 2013

Engineers from Brown University have mapped out the amounts of compression required to cause wrinkles, creases, and folds to form in rubbery materials. The findings could help engineers control the formation of these structures, which can be useful in designing nanostructured materials for flexible electronic devices or surfaces that require variable adhesion.

"When a rubbery material is compressed and reaches a critical load, it experiences instability and forms surface patterns like wrinkles, creases, or folds," said Mazen Diab, a postdoctoral researcher in Brown's School of Engineering and the paper's first author. "We're studying how each of those states forms."

While most of us might use the terms wrinkle, crease, and fold almost interchangeably, engineers recognize distinct properties in each of those states. As defined by the Brown researchers, the wrinkle state is when peaks and troughs start to form on the surface, like waves on the ocean. The crease state is when a distinctly sharp groove is formed on the surface. A fold occurs when the areas on either side of the wrinkle trough begin to touch, forming hollow channels beneath the surface plane of the material.

The researchers refer to these states collectively as "ruga" states, a term originating from Latin and often used in anatomy to describe wrinkle formations in the body such as on the stomach or the roof of the mouth.

Each ruga state could have different implications in a design setting. In a flexible circuit board, for example, wrinkles might be acceptable but creases or folds could cause short circuits. Engineers might use creases or folds to control the adhesive properties of a surface. These structures can hide the area of a sticky surface in troughs, making it less likely to stick. Stretching the surface brings the stickiness back. Folds could be useful in trapping large molecules or nanoparticles and in transporting fluids.

The idea behind this latest research is to understand at what points each ruga state forms, helping engineers to better utilize them. To do that, the researchers used a mathematical model that simulates the deformation characteristics of a layered rubbery material with its elastic property varying with depth from the surface. The result was a phase diagram that pinpoints the precise amounts of compression required to form each ruga state.

The diagram identifies two crease states along with a wrinkle state and a fold state. A setback crease happens when a wrinkle progresses to a crease under additional strain. An instantaneous crease happens when the initial strain is sufficient to skip the wrinkle phase.

"The phase diagram shows the compressive strain needed to form all these ruga states and shows the transitions from one state to another," said Diab, who works in the lab of professor Kyung-Suk Kim in Brown's School of Engineering. "Engineers can use it as a guide to get the shapes they want in different length scales."

Beyond material science, Kim says the work will help scientists "to fathom natural processes observed in broad scales from mountain folds to skin creases and folds of micro organs in biology."

The research is published in Proceedings of the Royal Society A. Also contributing to the paper were Teng Zhang, Ruike Zhao, and Huajian Gao. The work was supported by the Korea Institute of Machinery and Materials, the Korea Institute of Science and Technology and the U.S. National Science Foundation (DMR-0520651).

####

For more information, please click here

Contacts:
Kevin Stacey

401-863-3766

Copyright © Brown University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download paper:

Related News Press

News and information

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Flexible Electronics

Printing Flexible Graphene Supercapacitors December 1st, 2017

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

Metal-silicone microstructures could enable new flexible optical and electrical devices: Laser-based method creates force-sensitive, flexible microstructures that conduct electricity November 1st, 2017

Graphene enables high-speed electronics on flexible materials: A flexible terahertz detector has been developed by Chalmers using graphene transistors on plastic substrates. It is the first of its kind, and may open for applications requiring flexible electronics such as wireless October 31st, 2017

Govt.-Legislation/Regulation/Funding/Policy

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

Nanomedicine

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Discoveries

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Materials/Metamaterials

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

New oxide and semiconductor combination builds new device potential: Researchers integrated oxide two-dimensional electron gases with gallium arsenide and paved the way toward new opto-electrical devices January 10th, 2018

Ultrafine fibers have exceptional strength: New technique developed at MIT could produce strong, resilient nanofibers for many applications January 5th, 2018

Announcements

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

Research partnerships

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

New era in high field superconducting magnets opening new frontiers in science, nanotechnology and materials discovery January 9th, 2018

Touchy nanotubes work better when clean: Rice, Swansea scientists show that decontaminating nanotubes can simplify nanoscale devices January 4th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project