Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Not-weak knots bolster carbon fiber: New material created at Rice University with graphene oxide flakes

A knotted carbon fiber made at Rice University has the same tensile strength along its entire length. That property may make it suitable for advanced fabrics. (Credit: Tour Group/Rice University)
A knotted carbon fiber made at Rice University has the same tensile strength along its entire length. That property may make it suitable for advanced fabrics.

(Credit: Tour Group/Rice University)

Abstract:
Large flakes of graphene oxide are the essential ingredient in a new recipe for robust carbon fiber created at Rice University.



The fiber spun at Rice is unique for the strength of its knots. Most fibers are most likely to snap under tension at the knot, but Rice's fiber demonstrates what the researchers refer to as "100 percent knot efficiency," where the fiber is as likely to break anywhere along its length as at the knot.

Not-weak knots bolster carbon fiber: New material created at Rice University with graphene oxide flakes

Houston, TX | Posted on July 8th, 2013

The new work from the Rice lab of chemist James Tour appears online today in the journal Advanced Materials.

The material could be used to increase the strength of many products that use carbon fiber, like composites for strong, light aircraft or fabrics for bulletproof apparel, according to the researchers.

"To see this is very strange," Tour said. "The knot is as strong as any other part of the fiber. That never happens in a carbon fiber or polymer fibers."

Credit goes to the unique properties of graphene oxide flakes created in an environmentally friendly process patented by Rice a few years ago. The flakes that are chemically extracted from graphite seem small. They have an average diameter of 22 microns, a quarter the width of an average human hair. But they're massive compared with the petroleum-based pitch used in current carbon fiber. "The pitch particles are two nanometers in size, which makes our flakes about ten thousand times larger," said Rice graduate student Changsheng Xiang, lead author of the new paper.

Like with pitch, the weak van der Waals force holds the graphene flakes together. Unlike pitch, the atom-thick flakes have an enormous surface area and cling to each other like the scales on a fish when pulled into a fiber. The wet-spinning process is similar to one recently used to create highly conductive fibers made of nanotubes, but in this case Xiang just used water as the solvent rather than a super acid.

Bendability at the knot is due to the fiber's bending modulus, which is a measure of its flexibility, Xiang said. "Because graphene oxide has very low bending modulus, it thinks there's no knot there," he said.

Tour said industrial carbon fibers -- a source of steel-like strength in ultralight materials ranging from baseball bats to bicycles to bombers -- haven't improved much in decades because the chemistry involved is approaching its limits. But the new carbon fibers spun at room temperature at Rice already show impressive tensile strength and modulus and have the potential to be even stronger when annealed at higher temperatures.

Heating the fibers to about 2,100 degrees Celsius, the industry standard for making carbon fiber, will likely eliminate the knotting strength, Xiang said, but should greatly improve the material's tensile strength, which will be good for making novel composite materials.

The Rice researchers also created a second type of fiber using smaller 9-micron flakes of graphene oxide. The small-flake fibers, unlike the large, were pulled from the wet-spinning process under tension, which brought the flakes into even better alignment and resulted in fibers with strength approaching that of commercial products, even at room temperature.

Co-authors of the paper are Rice graduate students Colin Young, Gabriel Cerioti, Chi-Chau Hwang and Zheng Yan; postdoctoral researchers Xuan Wan and Jian Lin; Junichiro Kono, a professor of electrical and computer engineering and of physics and astronomy; and Matteo Pasquali, a professor of chemical and biomolecular engineering and of chemistry. Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science at Rice.

The Air Force Research Laboratory (through the University Technology Corp.), the Office of Naval Research, the Air Force Office of Scientific Research and the Welch Foundation supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to tinyurl.com/AboutRiceU.

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
David Ruth
713-348-6327


Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Related News Press

News and information

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Graphene

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

New test reveals purity of graphene: Rice, Osaka scientists use terahertz waves to spot contaminants August 13th, 2014

Chemistry

Production of Toxic Ion Nanosorbents with High Sorption Capacity in Iran August 17th, 2014

Scientists fold RNA origami from a single strand: RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, this technique can produce many complicated shapes. August 14th, 2014

Could hemp nanosheets topple graphene for making the ideal supercapacitor? August 12th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Novel chip-based platform could simplify measurements of single molecules: A nanopore-gated optofluidic chip combines electrical and optical measurements of single molecules onto a single platform August 14th, 2014

Discoveries

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Materials/Metamaterials

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Nano Bonds Increase Raw Strength of Fireproof Concretes August 18th, 2014

Molecular engineers record an electron's quantum behavior August 14th, 2014

Scientists fold RNA origami from a single strand: RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, this technique can produce many complicated shapes. August 14th, 2014

Announcements

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Сalculations with Nanoscale Smart Particles August 19th, 2014

Military

New material could enhance fast and accurate DNA sequencing August 13th, 2014

On the frontiers of cyborg science August 10th, 2014

Advanced thin-film technique could deliver long-lasting medication: Nanoscale, biodegradable drug-delivery method could provide a year or more of steady doses August 6th, 2014

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

Sports

CEA-Leti and CORIMA Team up on Force Sensors Integrated in Cycle Wheels to Measure Rider Power Output June 26th, 2014

‘Four!' Heads Up, Wide Use of More Flexible Metallic Glass Coming Your Way: Advances in Glass Alloys Lead to Strength, Flexibility March 4th, 2014

ASTM International Nanotechnology Committee Approves Airborne Nanoparticle Measurement Standard December 10th, 2013

Discovery Inspired by nature: textured materials to aid industry and military: Innovation Corps team developed metals and plastic that repel water, capture sunlight and prevent ice build-up August 19th, 2013

Aerospace/Space

The International Space Elevator Consortium (ISEC) is proud to announce the 2014 Space Elevator Conference! This annual event will be held at the Museum of Flight in Seattle, Washington from Friday, August 22nd through Sunday, August 24th August 19th, 2014

Life on Mars? Implications of a newly discovered mineral-rich structure August 19th, 2014

National Space Society Calls For Less US Dependence On Russian Space Technology July 15th, 2014

Motorized Miniature Screw-Actuator Provides 20 nm Resolution, Based on Piezo Effect July 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE