Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Linde Electronics’ carbon nanotube inks to drive innovation in next generation electronic devices

Abstract:
Linde Electronics, the global electronics business of The Linde Group, today launches a revolutionary new carbon nanotube ink to drive innovation in the development of next generation displays, sensors and other electronic devices. Linde's carbon nanotube inks can be used to manufacture completely new technologies, such as a smartphone with a screen that rolls up like a window shade and a see-through GPS device embedded in the windshield of a car.

Linde Electronics’ carbon nanotube inks to drive innovation in next generation electronic devices

Munich, Germany | Posted on June 28th, 2013

Carbon nanotubes with only 10,000th the diameter of a human hair are an allotrope of carbon like graphite and diamond, and they have unique physical and electronic properties. These include a higher thermal conductivity than diamond; greater mechanical strength than steel (orders of magnitude by weight); and a larger electrical conductivity than copper. It is due to these properties that carbon nanotubes will enable electronic device manufacturers develop more innovative electronic devices.

To help device manufacturers and the research and development community to explore the full potential of carbon nanotube based technologies, Linde is making its nanotube inks available to developers. These nanotube inks contain individual carbon nanotubes and are produced without damaging or shortening the nanotubes and therefore preserve the unique nanotube properties. This landmark development drastically improves the performance of transparent conductive thin films made from the inks and opens the door for the development of nanotube applications in not only consumer electronics, but also the healthcare sector and sensor manufacturing.

"While we've seen a lot of excitement around nanotubes in the past ten years, we've not yet seen a commercially viable nanotube solution in the market because of challenges in the processing of this great material," said Dr Sian Fogden, Market and Technology Development Manager for Linde Electronics' nanomaterials unit. "Our nanotube technology and our unique nanotube inks overcome these challenges, paving the way for completely new types of high-functionality electronic devices."

Linde, which develops and supplies specialist materials and gases for the world's leading electronic manufacturers, is in the final development stages with its single wall carbon nanotube technology. Alongside the launch of the nanotube ink into the development community, the company will also provide its nanotube ink at large scale directly to electronic device manufacturers.

####

About Linde Electronics
The Linde Group is a world-leading gases and engineering company with around 62,000 employees in more than 100 countries worldwide. In the 2012 financial year, Linde generated revenue of EUR 15.280 bn. The strategy of the Group is geared towards long-term profitable growth and focuses on the expansion of its international business with forward-looking products and services. Linde acts responsibly towards its shareholders, business partners, employees, society and the environment – in every one of its business areas, regions and locations across the globe. The company is committed to technologies and products that unite the goals of customer value and sustainable development.

For more information, please click here

Contacts:
Kersti Klami
Account Director
Technology

Dir : +44 20 7973 5999
M : +44 7891 796 473
F : +44 207 413 3131

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Flexible Electronics

Metal-silicone microstructures could enable new flexible optical and electrical devices: Laser-based method creates force-sensitive, flexible microstructures that conduct electricity November 1st, 2017

Graphene enables high-speed electronics on flexible materials: A flexible terahertz detector has been developed by Chalmers using graphene transistors on plastic substrates. It is the first of its kind, and may open for applications requiring flexible electronics such as wireless October 31st, 2017

Tungsten offers nano-interconnects a path of least resistance: Crystalline tungsten shows insight and promise in addressing the challenges of electrical interconnects that have high resistivity at the nanoscale October 4th, 2017

A flexible new platform for high-performance electronics September 29th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

TUBALL nanotube-based concentrates recognised as the most innovative raw material for composites by JEC Group November 7th, 2017

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Sensors

The stacked color sensor: True colors meet minimization November 16th, 2017

Promising sensors for submarines, mines and spacecraft: MSU scientists are developing nanostructured gas sensors that would work at room temperature November 10th, 2017

Practical superconducting nanowire single photon detector with record detection efficiency over 90 percent November 9th, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

Announcements

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Printing/Lithography/Inkjet/Inks/Bio-printing

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project