Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Linde Electronics’ carbon nanotube inks to drive innovation in next generation electronic devices

Abstract:
Linde Electronics, the global electronics business of The Linde Group, today launches a revolutionary new carbon nanotube ink to drive innovation in the development of next generation displays, sensors and other electronic devices. Linde's carbon nanotube inks can be used to manufacture completely new technologies, such as a smartphone with a screen that rolls up like a window shade and a see-through GPS device embedded in the windshield of a car.

Linde Electronics’ carbon nanotube inks to drive innovation in next generation electronic devices

Munich, Germany | Posted on June 28th, 2013

Carbon nanotubes with only 10,000th the diameter of a human hair are an allotrope of carbon like graphite and diamond, and they have unique physical and electronic properties. These include a higher thermal conductivity than diamond; greater mechanical strength than steel (orders of magnitude by weight); and a larger electrical conductivity than copper. It is due to these properties that carbon nanotubes will enable electronic device manufacturers develop more innovative electronic devices.

To help device manufacturers and the research and development community to explore the full potential of carbon nanotube based technologies, Linde is making its nanotube inks available to developers. These nanotube inks contain individual carbon nanotubes and are produced without damaging or shortening the nanotubes and therefore preserve the unique nanotube properties. This landmark development drastically improves the performance of transparent conductive thin films made from the inks and opens the door for the development of nanotube applications in not only consumer electronics, but also the healthcare sector and sensor manufacturing.

"While we've seen a lot of excitement around nanotubes in the past ten years, we've not yet seen a commercially viable nanotube solution in the market because of challenges in the processing of this great material," said Dr Sian Fogden, Market and Technology Development Manager for Linde Electronics' nanomaterials unit. "Our nanotube technology and our unique nanotube inks overcome these challenges, paving the way for completely new types of high-functionality electronic devices."

Linde, which develops and supplies specialist materials and gases for the world's leading electronic manufacturers, is in the final development stages with its single wall carbon nanotube technology. Alongside the launch of the nanotube ink into the development community, the company will also provide its nanotube ink at large scale directly to electronic device manufacturers.

####

About Linde Electronics
The Linde Group is a world-leading gases and engineering company with around 62,000 employees in more than 100 countries worldwide. In the 2012 financial year, Linde generated revenue of EUR 15.280 bn. The strategy of the Group is geared towards long-term profitable growth and focuses on the expansion of its international business with forward-looking products and services. Linde acts responsibly towards its shareholders, business partners, employees, society and the environment – in every one of its business areas, regions and locations across the globe. The company is committed to technologies and products that unite the goals of customer value and sustainable development.

For more information, please click here

Contacts:
Kersti Klami
Account Director
Technology

Dir : +44 20 7973 5999
M : +44 7891 796 473
F : +44 207 413 3131

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Flexible Electronics

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Nanocrystalline LEDs: Red, green, yellow, blue ... August 7th, 2017

New ultrafast flexible and transparent memory devices could herald new era of electronics April 1st, 2017

New low-cost technique converts bulk alloys to oxide nanowires January 24th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Killing cancer in the heat of the moment: A new method efficiently transfers genes into cells, then activates them with light. This could lead to gene therapies for cancers July 9th, 2017

Sensors

Leti Develops Proof of Concept to Test Wireless Systems in Aircraft: Will Present Results of Joint Project at AeroTech Conference And Exhibition in Fort Worth, Texas, Sept. 26-28 September 20th, 2017

Research shows how DNA molecules cross nanopores: Study could inform biosensors, manufacturing, and more September 5th, 2017

Leti and Partners in PiezoMAT Project Develop New Fingerprint Technology for Highly Reliable Security and ID Applications: Ultra-high Resolution Pressure Sensing Uses Matrices of Vertical Piezoelectric Nanowire To Reconstruct the Smallest Features of Human Fingerprints September 5th, 2017

New results reveal high tunability of 2-D material: Berkeley Lab-led team also provides most precise band gap measurement yet for hotly studied monolayer moly sulfide August 26th, 2017

Announcements

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Printing/Lithography/Inkjet/Inks/Bio-printing

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Simultaneous Design and Nanomanufacturing Speeds Up Fabrication: Method enhances broadband light absorption in solar cells August 5th, 2017

Meniscus-assisted technique produces high efficiency perovskite PV films July 7th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project