Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UNL team's discovery yields supertough, strong nanofibers

This high-resolution scanning electron microscopy image shows ultra-tough and strong continuous nanofibers developed by University of Nebraska-Lincoln engineers that can be easily aligned and bundled for handing and processing into various applications.Photo: Joel Brehm, Dimitry Papkov, Yuris Dzenis
This high-resolution scanning electron microscopy image shows ultra-tough and strong continuous nanofibers developed by University of Nebraska-Lincoln engineers that can be easily aligned and bundled for handing and processing into various applications.

Photo: Joel Brehm, Dimitry Papkov, Yuris Dzenis

Abstract:
University of Nebraska-Lincoln materials engineers have developed a structural nanofiber that is both strong and tough, a discovery that could transform everything from airplanes and bridges to body armor and bicycles. Their findings are featured on the cover of this week's April issue of the American Chemical Society's journal, ACS Nano.

UNL team's discovery yields supertough, strong nanofibers

Lincoln, NE | Posted on April 24th, 2013

"Whatever is made of composites can benefit from our nanofibers," said the team's leader, Yuris Dzenis, McBroom Professor of Mechanical and Materials Engineering and a member of UNL's Nebraska Center for Materials and Nanoscience.

"Our discovery adds a new material class to the very select current family of materials with demonstrated simultaneously high strength and toughness."

In structural materials, conventional wisdom holds that strength comes at the expense of toughness. Strength refers to a material's ability to carry a load. A material's toughness is the amount of energy needed to break it; so the more a material dents, or deforms in some way, the less likely it is to break. A ceramic plate, for example, can carry dinner to the table, but shatters if dropped, because it lacks toughness. A rubber ball, on the other hand, is easily squished out of shape, but doesn't break because it's tough, not strong. Typically, strength and toughness are mutually exclusive.

Dzenis and colleagues developed an exceptionally thin polyacrilonitrile nanofiber, a type of synthetic polymer related to acrylic, using a technique called electrospinning. The process involves applying high voltage to a polymer solution until a small jet of liquid ejects, resulting in a continuous length of nanofiber.

They discovered that by making the nanofiber thinner than had been done before, it became not only stronger, as was expected, but also tougher.

Dzenis suggested that toughness comes from the nanofibers' low crystallinity. In other words, it has many areas that are structurally unorganized. These amorphous regions allow the molecular chains to slip around more, giving them the ability to absorb more energy.

Most advanced fibers have fewer amorphous regions, so they break relatively easily. In an airplane, which uses many composite materials, an abrupt break could cause a catastrophic crash. To compensate, engineers use more material, which makes airplanes, and other products, heavier.

"If structural materials were tougher, one could make products more lightweight and still be very safe," Dzenis said.

Body armor, such as bulletproof vests, also requires a material that's both strong and tough. "To stop the bullet, you need the material to be able to absorb energy before failure, and that's what our nanofibers will do," he said.

Dzenis' co-authors are mechanical and materials engineering colleagues Dimitry Papkov, Yan Zou, Mohammad Nahid Andalib and Alexander Goponenko in UNL's Department of Mechanical and Materials Engineering, and Stephen Z.D. Cheng of the University of Akron, Ohio.

This research was funded by the National Science Foundation, the Air Force Office of Scientific Research and a U.S. Army Research Office Multidisciplinary University Research Initiative grant.

####

For more information, please click here

Contacts:
Yuris Dzenis

402-472-0713

Copyright © University of Nebraska-Lincoln

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Govt.-Legislation/Regulation/Funding/Policy

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Materials/Metamaterials

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Peering into private life of atomic clusters -- using the world's tiniest test tubes September 6th, 2018

Cannibalistic materials feed on themselves to grow new nanostructures September 1st, 2018

Environmentally friendly photoluminescent nanoparticles for more vivid display colors: Osaka University-led researchers created a new type of light-emitting nanoparticle that is made of ternary non-toxic semiconductors to help create displays and LED lighting with better colors t August 29th, 2018

Announcements

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Military

Ultracold atoms used to verify 1963 prediction about 1D electrons: Rice University, University of Geneva study focuses on theory that's increasingly relevant to chipmakers September 5th, 2018

Neutrophil nanosponges soak up proteins that promote rheumatoid arthritis September 3rd, 2018

Virginia Tech researchers develop novel process to 3D print one of the strongest materials on Earth August 23rd, 2018

Biomimetic micro/nanoscale fiber reinforced composites August 10th, 2018

Sports

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Graphene-based desiccant offers super dry solution to moisture control June 1st, 2018

Synthetic “Melanin” Could Act as a Natural Sunscreen: The pigmentlike nanoparticles could protect cells from the sun’s damaging rays July 1st, 2017

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Aerospace/Space

Virginia Tech researchers develop novel process to 3D print one of the strongest materials on Earth August 23rd, 2018

Kavli Lectures: New vision of nanomaterial synthesis and light-fueled space travel August 8th, 2018

Nanoscience and the future of healthcare kick off first day of ACS national meeting in Boston: Presidential events highlight safety, diversity and groundbreaking research August 2nd, 2018

Disability Can Be a Superpower in Space Disabled astronauts offer unique solutions to emergencies in space May 17th, 2018

Construction

A Comprehensive Guide: The Future of Nanotechnology September 13th, 2018

Weak hydrogen bonds key to strong, tough infrastructure: Rice University lab simulates polymer-cement composites to find strongest, toughest materials January 29th, 2018

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Corrosion in real time: UCSB researchers get a nanoscale glimpse of crevice and pitting corrosion as it happens September 14th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project