Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Honeycomb Nets from Bismuth Cubes: A New Prospect for Nanoelectronics

Abstract:
Researchers from Dresden discover a new material that conducts electric currents without loss of power over its edges and remains an insulator in its interior. The material is made out of bismuth cubes packed in a honeycomb motif that is known from the graphene structure. As opposed to graphene, the new material exhibits its peculiar electrical property also at room temperature and, hence, holds big promises for applications in nanoelectronics.

Honeycomb Nets from Bismuth Cubes: A New Prospect for Nanoelectronics

Dresden, Germany | Posted on March 19th, 2013

Researchers from the TU Dresden and the Leibniz Institute for Solid State and Materials Research, both in Dresden, have synthesized a new material that on the atomic level resembles graphene, a honeycomb net from carbon atoms. The new material is built mainly by atoms of the heavy element bismuth. Whereas a honeycomb-like sheet is formed by carbon atoms in graphene, the honeycomb net in the new material is assembled from bismuth cubes The researchers in Dresden are particularly excited about their discovery because the electrons inside their bismuth-based material form a new and exotic quantum state of matter. The joint paper by the groups of Prof. Michael Ruck from the Institute of Inorganic Chemistry, TU Dresden, and Prof. Jeroen van den Brink, IFW Dresden, recently published in Nature Materials, reports that the new material is made out of sheets of a so-called topological insulator, which has the property that electric currents can flow on its edges without loss of power.

What is a topological insulator? Traditionally materials are classified according to their conducting properties as either electrical conductors or insulators. Within this classification semiconductors are considered to be a special type of insulator. Topological insulators are described by physicists as a third state of matter the interior of which is perfectly insulating, while its outside surface and/or edges are conducting. Noteworthy is that the electric currents on the conducting surface and/or edges of a topological insulator can run unimpeded. This characteristic gives topologically insulating materials great potential for use in future microelectronic transistors and sensors that are highly energy efficient.

„Graphene was the first material predicted to be a topological insulator, but such an exotic state could only exist at extremely low temperatures, very close to the absolute zero of temperature", explains Professor Ruck the motivation behind the search for a suitable material. „The structure and topological properties of the discovered new material from bismuth cubes are related to those of graphene. However, our material has the remarkable advantage of being a topological insulator at room temperature."

Each electron carries besides an electrical charge also a magnetic moment, the spin of the electron. In a normal metal, such as copper, the electron spins point in an arbitrary direction. But electrons traveling in the same direction along the metallic edges of the bismuth cubes in the new material are very different in this respect: They spontaneously align their spins. This effect is due to the exotic quantum nature of the topological insulator. What is more, when these electrons change their direction of motion along the edge, their spins are also collectively reversed. Hence electrons that travel along the edge in opposite directions also have opposite spin orientations.

The spin-alignment of electrons that carry an electric current is an appealing feature for spintronics, an emerging information-processing technology that relies on the control of the intrinsic spin of electrons to build efficient computing and memory devices.

Both Michael Ruck and Jeroen van den Brink stand proud of the results of their close cooperation. „The excellent research environment and the strong scientific partnership in Dresden were essential for success", emphasizes Professor Jeroen van den Brink, a director of the Institute for Theoretical Solid State Physics at the Leibniz Institute Dresden.

Original publication:
Nature Materials, „Stacked topological insulator built from bismuth-based graphene sheet analogues",
DOI: 10.1038/NMAT3570

####

About TU Dresden
The TU Dresden is among the top universities in Germany and Europe: strong in research, offering first-rate programmes of an overwhelming diversity, with close ties to culture, industry and society. As a modern full-status university with 14 departments, it offers a wide academic range making it one of a very few in Germany. TU Dresden is the largest university in Saxony. The big campus family of TU Dresden are 37.000 students, ca. 5.300 publicly funded staff members – among them 507 professors – and approximately 3.400 externally funded staff members.

On the 15th of June 2012 TU Dresden has succeeded in the Initiative for Excellence by the Federal Government in all funding lines with all its proposals. The institutional strategy "The Synergetic University", both proposals for clusters of excellence "Center for Advancing Electronics Dresden" (cfaed) and “Center for Regenerative Therapies Dresden” (CRTD) as well as the Dresden International Graduate School for Biomedicine and Bioengineering (DIGS-BB) were approved. Now TUD is one of the eleven German universities that were identified as a “university of excellence”.

About the Leibniz Institute Dresden (IFW)

The Leibniz Institute for Solid State and Materials Research in Dresden – in short IFW Dresden – is a non-university research institute and a member of the G. W. Leibniz Scientific Community. It is concerned with modern materials science and combines explorative research in physics, chemistry and materials science with technological development of new materials and products. At present the IFW employs about 530 people, among them 200 scientists, mostly physicists, chemists and materials engineers. The annual budget of 29 Million Euro (2012) is supplied by the Federal government and by the German states in equal parts, the latter mainly by the Free State of Saxony. In addition to institutional funding, the IFW Dresden raises project resources of about 11 Million Euro per year.

For more information, please click here

Contacts:
Prof. Dr. Michael Ruck
Technische Universität Dresden

Tel. +49 351 463-33244

Prof. Dr. Jeroen van den Brink
IFW Dresden

Tel. +49 351 4659-400

Copyright © TU Dresden

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Graphene/ Graphite

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

Graphene makes rubber more rubbery May 23rd, 2016

Graphene: Progress, not quantum leaps May 23rd, 2016

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Chip Technology

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Dartmouth team creates new method to control quantum systems May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Nanoelectronics

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene May 20th, 2016

New type of graphene-based transistor will increase the clock speed of processors: Scientists have developed a new type of graphene-based transistor and using modeling they have demonstrated that it has ultralow power consumption compared with other similar transistor devices May 19th, 2016

Self-healing, flexible electronic material restores functions after many breaks May 17th, 2016

Discoveries

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

PETA science group publishes a review on pulmonary effects of nanomaterials: Archives of Toxicology publishes a review of scientific studies on fibrotic potential of nanomaterials May 26th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Materials/Metamaterials

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Announcements

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Research partnerships

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic