Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > X-rays reveal uptake of nanoparticles by soya bean crops: Metals contained in nanoparticles can enter into the food chain

Highly sensitive spectral analysis techniques at the ESRF enabled detecting otherwise undetectable nanoparticles of cerium dioxide in the soya beans. This image shows the X-ray fluorescence intensity in an area of about 0.5 by 0.5 mm2. The nanoparticle is indicated by a red pixel (high fluorescence) in the upper left quarter.

Credit: ESRF/H. Castillo-Michel
Highly sensitive spectral analysis techniques at the ESRF enabled detecting otherwise undetectable nanoparticles of cerium dioxide in the soya beans. This image shows the X-ray fluorescence intensity in an area of about 0.5 by 0.5 mm2. The nanoparticle is indicated by a red pixel (high fluorescence) in the upper left quarter.

Credit: ESRF/H. Castillo-Michel

Abstract:
Scientists have, for the first time, traced the nanoparticles taken up from the soil by crop plants and analysed the chemical states of their metallic elements. Zinc was shown to dissolve and accumulate throughout the plants, whereas the element cerium did not dissolve into plant tissue. The results contribute to the controversial debate on plant toxicity of nanoparticles and whether engineered nanoparticles can enter into the food chain. The study was published on 6 February 2013 in the journal ACS Nano.

X-rays reveal uptake of nanoparticles by soya bean crops: Metals contained in nanoparticles can enter into the food chain

Grenoble, France | Posted on February 6th, 2013

The international research team was led by Jorge Gardea-Torresdey from the University of Texas in El Paso and also comprised scientists from the University of California in Santa Barbara, the SLAC National Accelerator Laboratory in Stanford (California), and the European Synchrotron Radiation Facility in Grenoble (France).

Nanoparticles are present everywhere, for example in the fine dust of wood fires. Even a simple chemical compound behaves differently as a nanoparticle, mostly due to the increased specific surface area and reactivity. These appealing properties are why so-called Engineered Nanoparticles (ENPs) are now widely used in industrial processing and consumer goods. At the same time, their high reactivity has raised concerns about their fate, transport and toxicity in the environment. "A growing number of products containing ENPs are in the market and eventually they will get into the soil, water and air. This is why it is very important to study the interactions of crops with nanoparticles, as their possible translocation into the food chain starts here." says Jorge Gardea-Torresdey, a Professor and Chair of the Department of Chemistry at the University of Texas at El Paso.

The scientists focused on soya bean plants (glycine max), the fifth largest crop in global agricultural production, and the second in the U.S. The soil in which the plants were grown was mixed with zinc oxide (ZnO) and cerium dioxide (CeO2, nanoceria) nanoparticles, which are among the most highly used in industry. ZnO is widely used in sunscreen products, as gas sensors, antibacterial agents, optical and electrical devices, and as pigments. Nanoceria is an excellent catalyst for internal combustion and oil cracking processes and is also used in gas sensors, sunscreen products and cosmetic creams.

After the soya bean plants had been grown to maturity in greenhouses, the distribution of zinc and cerium throughout the plants was studied. The use of microscopic synchrotron X-ray beams at the European Synchrotron Radiation Facility (ESRF) and the Stanford Synchrotron Radiation Lightsource (SSRL), enabled scientists to determine the chemical form of these metals, i.e. whether they were still bound to nanoparticles or had dissolved and bound with plant tissue. "We used X-ray beams 1000 times thinner than a human hair, and the way in which they are absorbed tells us whether, at the microscopic spot they hit, zinc and cerium were present, and whether they formed part of a nanoparticle in the plant or not." says Hiram Castillo, a scientist at the ESRF in Grenoble.

Cerium was shown to be present not only in the nodules close to the soil but had also reached the plant pods. A detailed spectral analysis of the X-ray signals showed that the cerium in the nodules and pods was in the same chemical state as in the nanoparticles. However, part of the cerium had changed its oxidation state from Ce(IV) to Ce(III) which can alter the chemical reactivity of the nanoparticles.

Zinc was detected in nodules, stems and pods in concentrations higher than in a control group of plants. The spectral analysis did not show the presence of zinc in the plants bound as ZnO nanoparticles which means that the zinc in the nanoparticles had been biotransformed. The spectra suggest that organic acids present in the plants such as citrate, are the probable ligands for the zinc.

"As zinc is present in most plants, it didn't come as a surprise that zinc from the nanoparticles in the soil can enter into the plant tissue. But plants can also assimilate more dangerous elements like cadmium or arsenic which, when used in nanoparticles, might pose a real threat." says Hiram Castillo. "Our results have also shown that CeO2 nanoparticles can be taken up by food crops when present in the soil. Cerium has no chemical partner in the plant tissue and is not biotransformed in the soya bean but still reaches the food chain and the next soya bean plant generation." adds Jorge Gardea-Torresdey.

"One must keep in mind that once engineered nanoparticles enter the food chain, this is an accumulative process. Tolerable levels today can become dangerous tomorrow. This is why it is important to study not only whether man-made nanoparticles can be taken up from soil but also how they are biotransformed in the plants." concludes Jorge Gardea-Torresdey.

Arturo A. Keller of the University of California in Santa Barbara and Co-Director of the UC Center for the Environmental Implications of Nanotechnology, who was not involved in this research, comments:

"It's a fascinating paper with some genuine concerns in terms of potential health implications. Whilst we are not able to directly attribute nanoparticle ingestion to any particular disease or symptoms, we know from the latest laboratory studies the potency some have in terms of infiltrating our cells and tissue and causing harm. The fact that these potentially dangerous particles are being taken up by such a common crop suggests a need to review what materials are used in agriculture around the world. In particular, it raises concern over the use of treated waste water to irrigate crops all over the world which may provide a route for these potentially dangerous particles to get into our bodies if the content of the water is not more tightly managed."

####

For more information, please click here

Contacts:
Claus Habfast

33-666-662-384

Copyright © European Synchrotron Radiation Facility

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Leti Presents Advances in Propagation Modeling and Antenna Design for mmWave Spectrum: Paper Is One of 15 that Leti Presented at European Conference on Antennas and Propagation March 19-24 March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Imaging

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Next-gen steel under the microscope March 18th, 2017

Novel nozzle saves crystals: Double flow concept widens spectrum for protein crystallography March 17th, 2017

JPK’s NanoWizard® AFM systems are used at the University of Sheffield to understand soft matter and biological systems at the molecular scale March 7th, 2017

Sensors

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

Optical fingerprint can reveal pollutants in the air: Researchers at Chalmers University of Technology have proposed a new, sophisticated method of detecting molecules with sensors based on ultra-thin nanomaterials March 15th, 2017

New optical nanosensor improves brain mapping accuracy, opens way for more applications: Potassium-sensitive fluorescence-imaging method shines light on chemical activity within the brain March 3rd, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Discoveries

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Announcements

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Tools

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

CRMGroup in Belgium uses a Deben three point bending stage in the development of new steel & coated steel products for automotive and other industrial applications March 21st, 2017

Next-gen steel under the microscope March 18th, 2017

Novel nozzle saves crystals: Double flow concept widens spectrum for protein crystallography March 17th, 2017

Personal Care/Cosmetics

Programmable materials find strength in molecular repetition May 23rd, 2016

Common nanoparticle has subtle effects on oxidative stress genes May 11th, 2016

NRL reveals novel uniform coating process of p-ALD April 21st, 2016

New ORNL method could unleash solar power potential March 16th, 2016

Safety-Nanoparticles/Risk management

NIST updates 'sweet' 1950s separation method to clean nanoparticles from organisms January 27th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Investigating the impact of natural and manmade nanomaterials on living things: Center for Environmental Implications of Nanotechnology develops tools to assess current and future risk January 9th, 2017

First time physicists observed and quantified tiny nanoparticle crossing lipid membrane November 7th, 2016

Research partnerships

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project