Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Self-Folding Polymers: Nature-Inspired Microengineering of Complex 3D Structures

Abstract:
Self-organisation and assembly at the sub-millimeter-scale are fundamental for structure formation in nature, and, not surprisingly, are inspiring the design of new, intelligent materials with fascinating properties. A new platform has been developed by researchers in Germany allowing the strategic design and fabrication of 3D polymeric materials with complexity surpassing that found in nature. The new materials yielded could lead to significant, foreseeable advances in technologies such as microfluidics, biomaterials, and soft electronics.

Self-Folding Polymers: Nature-Inspired Microengineering of Complex 3D Structures

Germany | Posted on November 29th, 2012

Dr. Leonid Ionov and co-workers employed a thin self-folding polymer film as the biomimetic material. In general, self-folding polymer films consist of two different polymers, one of which is stimuli responsive. This results in non-equal expansion upon exposure to an external stimulus (e.g., temperature, pH, light), and hence folding of the film. Until now, however, a facile approach to control this process and attain specific geometries has been lacking. The two general approaches previously used either involve homogeneous bilayers from which only simple, round structures are attained or rely on complex, local patterning of active materials on the film which act as hinges, permitting more sophisticated geometries to be realised. Significantly, both approaches only permit folding to occur in a single step. In contrast, the new approach developed is not only multistep, but affords sharply hinged structures without the tedious need for pattering of active polymers.

At the crux of this technique is the fact that the thermally-induced swelling of the polymer bilayer film used is not homogeneous; rather it occurs progressively with a path dependence that is determined by the local film geometry. This is a consequence of water only being able to penetrate the bilayer from its periphery. The swelling and subsequent folding of the film occur as the water diffusion front progresses inwards.

By analysing the folding patterns, the researchers identified, supported by numerical simulations, an underlying set of folding rules, demonstrating that the isotropic films bend in a predictable manner. Applying these rules, they were able to tailor the initial film, such that hinges formed at desired locations upon thermal activation. The folding process could thereby be directed in multiple, discrete steps, forming complex 3D structures. An elegant example of this is the pyramids shown in the figure and movie above.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Videos/Movies

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Thin films

New prospects for universal memory -- high speed of RAM and the capacity of flash: Thin films created at MIPT could be the basis for future development of ReRAM June 17th, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other not merely making contact April 21st, 2017

Nanomechanics Inc. President Warren Oliver, PhD to Present at ICMCTF: Nanoindentation experts will discuss new testing system that measures the interaction of two objects that are sliding across each other not merely making contact April 17th, 2017

Microfluidics/Nanofluidics

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Nano-SPEARs gently measure electrical signals in small animals: Rice University's tiny needles simplify data gathering to probe diseases, test drugs April 17th, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

DNA 'barcoding' allows rapid testing of nanoparticles for therapeutic delivery February 7th, 2017

Flexible Electronics

New ultrafast flexible and transparent memory devices could herald new era of electronics April 1st, 2017

New low-cost technique converts bulk alloys to oxide nanowires January 24th, 2017

Chip Technology

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Self Assembly

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Nanotubes that build themselves April 14th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Most Complex Nanoparticle Crystal Ever Made by Design: Possible applications include controlling light, capturing pollutants, delivering therapeutics March 2nd, 2017

Discoveries

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Materials/Metamaterials

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

Announcements

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Nanobiotechnology

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

Nanobiotix's promising data from Phase I/II head and neck cancer trial presented at ASCO June 5th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project