Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Self-Folding Polymers: Nature-Inspired Microengineering of Complex 3D Structures

Abstract:
Self-organisation and assembly at the sub-millimeter-scale are fundamental for structure formation in nature, and, not surprisingly, are inspiring the design of new, intelligent materials with fascinating properties. A new platform has been developed by researchers in Germany allowing the strategic design and fabrication of 3D polymeric materials with complexity surpassing that found in nature. The new materials yielded could lead to significant, foreseeable advances in technologies such as microfluidics, biomaterials, and soft electronics.

Self-Folding Polymers: Nature-Inspired Microengineering of Complex 3D Structures

Germany | Posted on November 29th, 2012

Dr. Leonid Ionov and co-workers employed a thin self-folding polymer film as the biomimetic material. In general, self-folding polymer films consist of two different polymers, one of which is stimuli responsive. This results in non-equal expansion upon exposure to an external stimulus (e.g., temperature, pH, light), and hence folding of the film. Until now, however, a facile approach to control this process and attain specific geometries has been lacking. The two general approaches previously used either involve homogeneous bilayers from which only simple, round structures are attained or rely on complex, local patterning of active materials on the film which act as hinges, permitting more sophisticated geometries to be realised. Significantly, both approaches only permit folding to occur in a single step. In contrast, the new approach developed is not only multistep, but affords sharply hinged structures without the tedious need for pattering of active polymers.

At the crux of this technique is the fact that the thermally-induced swelling of the polymer bilayer film used is not homogeneous; rather it occurs progressively with a path dependence that is determined by the local film geometry. This is a consequence of water only being able to penetrate the bilayer from its periphery. The swelling and subsequent folding of the film occur as the water diffusion front progresses inwards.

By analysing the folding patterns, the researchers identified, supported by numerical simulations, an underlying set of folding rules, demonstrating that the isotropic films bend in a predictable manner. Applying these rules, they were able to tailor the initial film, such that hinges formed at desired locations upon thermal activation. The folding process could thereby be directed in multiple, discrete steps, forming complex 3D structures. An elegant example of this is the pyramids shown in the figure and movie above.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

Flexible Electronics

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

Thin films

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

Videos/Movies

Freezing single atoms to absolute zero with microwaves brings quantum technology closer: Atoms frozen to absolute zero using microwaves July 2nd, 2015

Microfluidics/Nanofluidics

Lehigh University researchers unveil engineering innovations at TechConnect 2015: TechConnect is the world's largest accelerator for industry-vetted emerging-technologies ready for commercialization June 11th, 2015

How to cut a vortex into slices: A group of physicists, lead by Olga Vinogradova, professor at the Lomonosov Moscow State University, came up with a way to stir up a liquid in the microchannel June 3rd, 2015

What makes cancer cells spread? New device offers clues May 19th, 2015

Microchip captures clusters of circulating tumor cells -- NIH study May 18th, 2015

Chip Technology

Nanometrics to Announce Second Quarter Financial Results on July 23, 2015 July 2nd, 2015

The quantum middle man July 2nd, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

Emergence of a 'devil's staircase' in a spin-valve system July 1st, 2015

Self Assembly

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

New conductive ink for electronic apparel June 25th, 2015

Giving atoms their marching orders: Highly homogeneous nanotube enforces single-file flow of atoms in gas diffusion. Direct comparison of single-file and Fickian diffusion possible with new system described by researchers at the University of South Carolina and University of Flor June 24th, 2015

n-tech Research Issues Report on Smart Coatings Market, Free Download Available on Firm’s Website June 24th, 2015

Discoveries

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

The quantum middle man July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Materials/Metamaterials

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Proposed TSCA Nanomaterial Rule ‘Premature’, Says Former EPA Toxicologist July 1st, 2015

Announcements

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Producing spin-entangled electrons July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Nanobiotechnology

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Nanometric sensor designed to detect herbicides can help diagnose multiple sclerosis June 23rd, 2015

Newly-Developed Biosensor in Iran Detects Cocaine Addiction June 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project