Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Manufacturing complex 3D metallic structures at nanoscale made possible

Encapsulating milk particles
Encapsulating milk particles

Abstract:
The fabrication of many objects, machines, and devices around us rely on the controlled deformation of metals by industrial processes such as bending, shearing, and stamping. Is this technology transferrable to nanoscale? Can we build similarly complex devices and machines with very small dimensions?

Manufacturing complex 3D metallic structures at nanoscale made possible

Aalto, Finland | Posted on October 19th, 2012

Scientists from Aalto University in Finland and the University of Washington in the US have just demonstrated this to be possible. By combining ion processing and nanolithography they have managed to create complex three-dimensional structures at nanoscale.

The discovery follows from a quest for understanding the irregular folding of metallic thin films after being processed by reactive ion etching.

- We were puzzled by the strong-width-dependent curvatures in the metallic strips. Usually initially-strained bilayer metals do not curl up this way, explains Khattiya Chalapat from Aalto University.

The puzzle began to unravel when Chalapat noticed, together with Dr. Hua Jiang, that the Ti peak was absent from the EDX spectra of folded Ti/Al bilayers.

Further experiments at the O.V. Lounasmaa Laboratory confirmed that the strips bend upward with strong width-dependent curvatures if the bottom layer of the strips is made more reactive to ions than the top surface.

In nature, similar geometrical effects take place in self-organization directly observable to the human eye. When dandelion flowers bloom, one may try cutting the flower stem into small strips; put them in water, and the strips will fold with observable width-dependent curvatures due to differences in the water absorption between the inside and outside parts of the stem.

- Our idea was to find a way to adapt these natural processes to nanofabrication. This led us to an incidental finding that a focused ion beam can locally induce bending with nanoscale resolution.

The technology has various applications in the fabrication of nanoscale devices. The structures are surprisingly resilient:­ the team found them to be quite sturdy and robust under a variety of adverse conditions, such as electrostatic discharge and heating.

- Because the structures are so small, the coupling and the magnitude of typical nanoscale forces acting on them would be commensurately small, reminds Docent Sorin Paraoanu, the leader of the Kvantti research group, Aalto University.

- As for applications, we have demonstrated so far that these structures can capture and retain particles with dimensions of the order of a micrometer. However, we believe that we are just scratching the tip of the iceberg: a comprehensive theory of ion-assisted self-assembly processes is yet to be reached, notes Paraoanu.

The research has been recently published in the Early View edition of Advanced Materials.

Khattiya Chalapat and Sorin Paraoanu would like to give credit to the Aalto University research facilities for microfabrication and imaging at Micronova Centre for Micro and Nanotechnology and the Nanomicroscopy Center in Finland.

####

For more information, please click here

Contacts:
Khattiya Chalapat
Aalto University
Finland
+358 45 3587276

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to article:

Link to Kvantti research group:

Related News Press

News and information

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Videos/Movies

Novel nanoparticle made of common mineral may help keep tumor growth at bay February 4th, 2016

New invention revolutionizes heat transport February 1st, 2016

Nano-coating makes coaxial cables lighter: Rice University scientists replace metal with carbon nanotubes for aerospace use January 28th, 2016

Digital Surf launches revolutionary SEM image colorization January 26th, 2016

Molecular Machines

'Spermbots' could help women trying to conceive (video) January 15th, 2016

Scientists blueprint tiny cellular 'nanomachine' December 17th, 2015

Nano-walkers take speedy leap forward with first rolling DNA-based motor: Fastest DNA motor holds potential for disease diagnostics December 1st, 2015

Rice makes light-driven nanosubmarines: Speedy single-molecule submersibles are a first November 16th, 2015

Molecular Nanotechnology

Nanodevice, build thyself: Researchers in Germany studied how a multitude of electronic interactions govern the encounter between a molecule called porphine and copper and silver surfaces January 18th, 2016

Nano-walkers take speedy leap forward with first rolling DNA-based motor: Fastest DNA motor holds potential for disease diagnostics December 1st, 2015

Rice makes light-driven nanosubmarines: Speedy single-molecule submersibles are a first November 16th, 2015

The World's Smallest Robots: Rise of the Nanomachines Reactions - Uncover the Chemistry in Everyday Life November 4th, 2015

Discoveries

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Announcements

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Printing/Lithography/Inkjet/Inks

Teijin to Participate in Nano Tech 2016 January 21st, 2016

New bimetallic alloy nanoparticles for printed electronic circuits: Production of oxidation-resistant copper alloy nanoparticles by electrical explosion of wire for printed electronics January 5th, 2016

Photonic “sintering” may create new solar, electronics manufacturing technologies December 1st, 2015

Screen Printable Functionalised Graphene Ink November 3rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic