Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Bio-inspired nanoantennas for light emission

© Busson, Rolly, Stout, Bonod, Bidault Schematic representation of a nanoantenna formed of two gold nanoparticles linked by a DNA double strand and supplied by a single quantum emitter.
© Busson, Rolly, Stout, Bonod, Bidault

Schematic representation of a nanoantenna formed of two gold nanoparticles linked by a DNA double strand and supplied by a single quantum emitter.

Abstract:
ust as radio antennas amplify the signals of our mobile phones and televisions, the same principle can apply to light. For the first time, researchers from CNRS and Aix Marseille Université have succeeded in producing a nanoantenna from short strands of DNA, two gold nanoparticles and a small fluorescent molecule that captures and emits light. This easy-to-handle optical antenna is described in an article published in Nature Communications on 17 July 2012. This work could in the longer term lead to the development of more efficient light-emitting diodes, more compact solar cells or even be used in quantum cryptography.

Bio-inspired nanoantennas for light emission

Paris, France | Posted on July 28th, 2012

Since light is a wave, it should be possible to develop optical antennas capable of amplifying light signals in the same way as our televisions and mobile phones capture radio waves. However, since light oscillates a million times faster than radio waves, extremely small nanometer (nm) sized objects are needed to capture such very rapid light waves. Consequently, the optical equivalent of an elementary antenna (of dipole type) is a quantum emitter surrounded by two particles a thousand times smaller than a human hair.

For the first time, researchers from the Langevin and Fresnel1 Institutes have developed such a bio-inspired light nanoantenna, which is simple and easy to handle. They grafted gold particles (36 nm diameter) and a fluorescent organic colorant onto short synthetic DNA strands (10 to 15 nm long). The fluorescent molecule acts as a quantum source, supplying the antenna with photons, while the gold nanoparticles amplify the interaction between the emitter and the light. The scientists produced in parallel several billion copies of these pairs of particles (in solution) by controlling the position of the fluorescent molecule with nanometric precision, thanks to the DNA backbone. These characteristics go well beyond the possibilities offered by conventional lithography techniques currently used in the design of microprocessors. In the longer term, such miniaturization could allow the development of more efficient LEDs, faster detectors and more compact solar cells. These nanosources of light could also be used in quantum cryptography.

Full bibliographic information

"Accelerated single photon emission from dye molecule driven nanoantennas assembled on DNA" Mickaël P. Busson, Brice Rolly, Brian Stout, Nicolas Bonod and Sébastien Bidault - Nature Communications, 17 July 2012

####

For more information, please click here

Contacts:
CNRS researcher
Sébastien Bidault
T. 00.33 (0)1 80 96 30 40


CNRS press officer
Elsa Champion
T. 00.33 (0)1 44 96 43 90

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Display technology/LEDs/SS Lighting/OLEDs

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

CCNY physicists demonstrate photonic hypercrystals for control of light-matter interaction May 5th, 2017

New ultrafast flexible and transparent memory devices could herald new era of electronics April 1st, 2017

Nanoelectronics

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

GLOBALFOUNDRIES on Track to Deliver Leading-Performance 7nm FinFET Technology: New 7LP technology offers 40 percent performance boost over 14nm FinFET June 13th, 2017

Seeing the invisible with a graphene-CMOS integrated device June 6th, 2017

IBM Research Alliance Builds New Transistor for 5nm Technology: Less than two years since announcing a 7nm test chip, scientists have achieved another breakthrough June 5th, 2017

Discoveries

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Announcements

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Energy

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

Solar/Photovoltaic

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

In a project funded by the Austrian Science Fund FWF, the physicist Serdar Sarıçiftçi investigates possible uses in electronics of the semiconductor properties of indigo pigment June 14th, 2017

Quantum nanoscience

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

In atomic propellers, quantum phenomena can mimic everyday physics June 1st, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project