Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Study shows availability of hydrogen controls chemical structure of graphene oxide: Metastable material

Georgia Tech researchers Angelo Bongiorno and Elisa Riedo pose with a graphene oxide sample, with a computer model of the material’s structure shown behind them.

Credit: Georgia Tech Photo: Gary Meek
Georgia Tech researchers Angelo Bongiorno and Elisa Riedo pose with a graphene oxide sample, with a computer model of the material’s structure shown behind them.

Credit: Georgia Tech Photo: Gary Meek

Abstract:
A new study shows that the availability of hydrogen plays a significant role in determining the chemical and structural makeup of graphene oxide, a material that has potential uses in nano-electronics, nano-electromechanical systems, sensing, composites, optics, catalysis and energy storage.

Study shows availability of hydrogen controls chemical structure of graphene oxide: Metastable material

Atlanta, GA | Posted on May 22nd, 2012

The study also found that after the material is produced, its structural and chemical properties continue to evolve for more than a month as a result of continuing chemical reactions with hydrogen.

Understanding the properties of graphene oxide - and how to control them - is important to realizing potential applications for the material. To make it useful for nano-electronics, for instance, researchers must induce both an electronic band gap and structural order in the material. Controlling the amount of hydrogen in graphene oxide may be the key to manipulating the material properties.

"Graphene oxide is a very interesting material because its mechanical, optical and electronic properties can be controlled using thermal or chemical treatments to alter its structure," said Elisa Riedo, an associate professor in the School of Physics at the Georgia Institute of Technology. "But before we can get the properties we want, we need to understand the factors that control the material's structure. This study provides information about the role of hydrogen in the reduction of graphene oxide at room temperature."

The research, which studied graphene oxide produced from epitaxial graphene, was reported on May 6 in the journal Nature Materials. The research was sponsored by the National Science Foundation, the Materials Research Science and Engineering Center (MRSEC) at Georgia Tech, and by the U.S. Department of Energy.

Graphene oxide is formed through the use of chemical and thermal processes that mainly add two oxygen-containing functional groups to the lattice of carbon atoms that make up graphene: epoxide and hydroxyl species. The Georgia Tech researchers began their studies with multilayer expitaxial graphene grown atop a silicon carbide wafer, a technique pioneered by Walt de Heer and his research group at Georgia Tech. Their samples included an average of ten layers of graphene.

After oxidizing the thin films of graphene using the established Hummers method, the researchers examined their samples using X-ray photo-emission spectroscopy (XPS). Over about 35 days, they noticed the number of epoxide functional groups declining while the number of hydroxyl groups increased slightly. After about three months, the ratio of the two groups finally reached equilibrium.

"We found that the material changed by itself at room temperature without any external stimulation," said Suenne Kim, a postdoctoral fellow in Riedo's laboratory. "The degree to which it was unstable at room temperature was surprising."

Curious about what might be causing the changes, Riedo and Kim took their measurements to Angelo Bongiorno, an assistant professor who studies computational materials chemistry in Georgia Tech's School of Chemistry and Biochemistry. Bongiorno and graduate student Si Zhou studied the changes using density functional theory, which suggested that hydrogen could be combining with oxygen in the functional groups to form water. That would favor a reduction in the epoxide groups, which is what Riedo and Kim were seeing experimentally.

"Elisa's group was doing experimental measurements, while we were doing theoretical calculations," Bongiorno said. "We combined our information to come up with the idea that maybe there was hydrogen involved."

The suspicions were confirmed experimentally, both by the Georgia Tech group and by a research team at the University of Texas at Dallas. This information about the role of hydrogen in determining the structure of graphene oxide suggests a new way to control its properties, Bongiorno noted.

"During synthesis of the material, we could potentially use this as a tool to change the structure," he said. "By understanding how to use hydrogen, we could add it or take it out, allowing us to adjust the relative distribution and concentration of the epoxide and hydroxyl species which control the properties of the material."

Riedo and Bongiorno acknowledge that their material - based on epitaxial graphene - may be different from the oxide produced from exfoliated graphene. Producing graphene oxide from flakes of the material involves additional processing, including dissolving in an aqueous solution and then filtering and depositing the material onto a substrate. But they believe hydrogen plays a similar role in determining the properties of exfoliated graphene oxide.

"We probably have a new new form of graphene oxide, one that may be more useful commercially, although the same processes should also be happening within the other form of graphene oxide," said Bongiorno.

The next steps are to understand how to control the amount of hydrogen in epitaxial graphene oxide, and what conditions may be necessary to affect reactions with the two functional groups. Ultimately, that may provide a way to open an electronic band gap and simultaneously obtain a graphene-based material with electron transport characteristics comparable to those of pristine graphene.

"By controlling the properties of graphene oxide through this chemical and thermal reduction, we may arrive at a material that remains close enough to graphene in structure to maintain the order necessary for the excellent electronic properties, while having the band gap needed to create transistors," Riedo said. "It could be that graphene oxide is the way to arrive at that type of material."

Beyond those already mentioned, the paper's authors included Yike Hu, Claire Berger and Walt de Heer from the School of Physics at Georgia Tech, and Muge Acik and Yves Chabal from the Department of Materials Science and Engineering at the University of Texas at Dallas.

This research was supported by the National Science Foundation under grants CMMI-1100290, DMR-0820382 and DMR-0706031, and by the U.S. Department of Energy's Office of Basic Energy Sciences under grants DE-FG02-06ER46293 and DE-SC001951. The content is solely the responsibility of the principal investigators and does not necessarily represent the official views of the National Science Foundation or the Department of Energy.

####

For more information, please click here

Contacts:
John Toon

404-894-6986

Copyright © Georgia Institute of Technology Research News

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Lego proteins revealed: Self-assembling protein complexes based on a single mutation could provide scaffolding for nanostructures August 23rd, 2017

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Graphene/ Graphite

Researchers printed graphene-like materials with inkjet August 17th, 2017

From hot to cold: How to move objects at the nanoscale: Moving a single gold nanocluster on a graphene membrane, thanks to a thermal gradient applied to the borders: a new study sheds light on the physical mechanisms driving this phenomenon August 10th, 2017

Controlled manipulation: Scientists at FAU are investigating the properties of hybrid systems consisting of carbon nanostructures and a dye August 8th, 2017

Chemistry

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

NEMS

Leti Scientists Participating in Sessions on Med Tech, Automotive Technologies, MEMS, Si-photonics and Lithography at SEMICON Europa: Teams also Will Demonstrate Technology Advances in Telecom, Data Fusion, Energy, Silicon Photonics and 3D Integration October 18th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Nano-photonics meets nano-mechanics: Controlling on-chip nano-optics by graphene nano-opto-mechanics January 22nd, 2016

Mechanical quanta see the light January 20th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Chip Technology

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Sensors

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

Nanoelectronics

GLOBALFOUNDRIES Demonstrates 2.5D High-Bandwidth Memory Solution for Data Center, Networking, and Cloud Applications: Solution leverages 2.5D packaging with low-latency, high-bandwidth memory PHY built on FX-14™ ASIC design system August 9th, 2017

GLOBALFOUNDRIES, Silicon Mobility Deliver the Industry’s First Automotive FPCU to Boost Performance for Hybrid and Electric Vehicles: Silicon Mobility and GF’s 55nm LPx -enabled platform, with SST’s highly-reliable SuperFlash® memory technology, boosts automotive performance, ene August 3rd, 2017

Scientists discover new magnet with nearly massless charge carriers July 29th, 2017

Atomic discovery opens door to greener, faster, smaller electronic circuitry: Scientists find way to correct communication pathways in silicon chips, making them perfect July 27th, 2017

Discoveries

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Lego proteins revealed: Self-assembling protein complexes based on a single mutation could provide scaffolding for nanostructures August 23rd, 2017

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Materials/Metamaterials

Lego proteins revealed: Self-assembling protein complexes based on a single mutation could provide scaffolding for nanostructures August 23rd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Announcements

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Lego proteins revealed: Self-assembling protein complexes based on a single mutation could provide scaffolding for nanostructures August 23rd, 2017

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Energy

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Rice U. scientists map ways forward for lithium-ion batteries for extreme environments: Paper details developments toward high-temperature batteries July 27th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

Photonics/Optics/Lasers

Researchers printed graphene-like materials with inkjet August 17th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

High resolution without particle accelerator: A first for physics -- University of Jena physicists are first to achieve optical coherence tomography with XUV radiation at laboratory scale August 7th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project