Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Graphene: Impressive capabilities on the horizon: A Rice University research team makes graphene suitable for a variety of organic chemistry applications

Abstract:
The Air Force Office of Scientific Research (AFOSR), along with other funding agencies, helped a Rice University research team make graphene suitable for a variety of organic chemistry applications—especially the promise of advanced chemical sensors, nanoscale electronic circuits and metamaterials.

Graphene: Impressive capabilities on the horizon: A Rice University research team makes graphene suitable for a variety of organic chemistry applications

Arlington, VA | Posted on January 24th, 2012

Ever since the University of Manchester's Andre Geim and Konstantin Novoselov received the 2010 Nobel Prize in Physics for their groundbreaking graphene experiments, there has been an explosion of graphene related discoveries; but graphene experimentation had been ongoing for decades and many ultimate graphene associated breakthroughs were already well under way in various labs when the Nobel committee acknowledged the significance of this new wonder material.

And one such laboratory was Dr. James Tour's at Rice, whose team found a way to attach various organic molecules to sheets of graphene, making it suitable for a range of new applications. Starting with graphene's two-dimensional atomic scale honeycomb lattice of carbon atoms, the Rice team built upon previous graphene community discoveries to transform graphene's one sheet structure into a superlattice.

While carbon is a key part in most organic chemical reactions, graphene poses a problem in that it plays an inert role—not responding to organic chemical reactions. The Rice team solved this dilemma by treating graphene with hydrogen. This classic hydrogenation process restructured the graphene honeycomb lattice into a two-dimensional, semiconducting superlattice called graphane.

The hydrogenation process can then be tailored to make particular patterns in the superlattice to be followed by the attachment of mission specific molecules to where those hydrogen molecules are located. These mission specific molecular catalysts allow for the possibility of a wide variety of functionality. They can not only be used as the basis for creating graphene-based organic chemistry, but tailored for electronics and optics applications, as well as novel types of metamaterials for nanoengineering highly efficient thermoelectric devices and sensors for various chemicals or pathogens. The beauty of this process is the promise it holds for future devices with the ability to efficiently accomplish a wide variety of highly sophisticated functions in one small affordable device.

Dr. Charles Lee, the AFOSR program manager who funded this research, notes that graphene chemistry in general can enable smart materials for many special applications and that this latest effort in particular can contribute to future electronics applications and may be a way to arrive at faster and less energy consuming electronics.

####

About Air Force Office of Scientific Research
The Air Force Office of Scientific Research, located in Arlington, Virginia, continues to expand the horizon of scientific knowledge through its leadership and management of the Air Force's basic research program. As a vital component of the Air Force Research Laboratory, AFOSR's mission is to discover, shape and champion basic science that profoundly impacts the future Air Force.

Like AFOSR on Facebook or follow us on Twitter to stay up-to-date with all of our highlighted research and 60th anniversary events.

For more information, please click here

Contacts:
Dr. Robert White

703-588-0665

Copyright © Air Force Office of Scientific Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

International research partnership tricks the light fantastic March 2nd, 2015

UC research partnership explores how to best harness solar power March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Graphene

UC research partnership explores how to best harness solar power March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Chemistry

Chromium-Centered Cycloparaphenylene Rings as New Tools for Making Functionalized Nanocarbons February 24th, 2015

Stretch and relax! -- Losing 1 electron switches magnetism on in dichromium February 23rd, 2015

A straightforward, rapid and continuous method to protect MOF nanocrystals against water February 9th, 2015

Research shows benefits of silicon carbide for sensors in harsh environments: Advantages identified across industries February 9th, 2015

Govt.-Legislation/Regulation/Funding/Policy

New nanodevice defeats drug resistance: Tiny particles embedded in gel can turn off drug-resistance genes, then release cancer drugs March 2nd, 2015

Forbidden quantum leaps possible with high-res spectroscopy March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Sensors

Penn researchers develop new technique for making molybdenum disulfide: Extra control over monolayer material with advantages over graphene February 19th, 2015

Researchers build atomically thin gas and chemical sensors: Sensors made of molybdenum disulfide are small, thin and have a high level of selectivity when detecting gases and chemicals February 19th, 2015

Production of Biosensor in Iran to Detect Oxalic Acid February 18th, 2015

Improved fire detection with new ultra-sensitive, ultraviolet light sensor February 17th, 2015

Nanoelectronics

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Ultra-thin nanowires can trap electron 'twisters' that disrupt superconductors February 24th, 2015

Improved fire detection with new ultra-sensitive, ultraviolet light sensor February 17th, 2015

Nanotechnology facility planned in Lund, Sweden: A production facility for start-ups in the field of nanotechnology may be built in the Science Village in Lund, a world-class research and innovation village that is also home to ESS, the European Spallation Source February 15th, 2015

Discoveries

Colon + septic tank = unique, at times stinky, study: Researchers use lab-scale human colon and septic tank to study impact of copper nanoparticles on the environment March 2nd, 2015

New nanodevice defeats drug resistance: Tiny particles embedded in gel can turn off drug-resistance genes, then release cancer drugs March 2nd, 2015

Breakthrough in OLED technology March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

Materials/Metamaterials

Breakthrough in OLED technology March 2nd, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Announcements

International research partnership tricks the light fantastic March 2nd, 2015

UC research partnership explores how to best harness solar power March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE