Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Graphene: Impressive capabilities on the horizon: A Rice University research team makes graphene suitable for a variety of organic chemistry applications

Abstract:
The Air Force Office of Scientific Research (AFOSR), along with other funding agencies, helped a Rice University research team make graphene suitable for a variety of organic chemistry applications—especially the promise of advanced chemical sensors, nanoscale electronic circuits and metamaterials.

Graphene: Impressive capabilities on the horizon: A Rice University research team makes graphene suitable for a variety of organic chemistry applications

Arlington, VA | Posted on January 24th, 2012

Ever since the University of Manchester's Andre Geim and Konstantin Novoselov received the 2010 Nobel Prize in Physics for their groundbreaking graphene experiments, there has been an explosion of graphene related discoveries; but graphene experimentation had been ongoing for decades and many ultimate graphene associated breakthroughs were already well under way in various labs when the Nobel committee acknowledged the significance of this new wonder material.

And one such laboratory was Dr. James Tour's at Rice, whose team found a way to attach various organic molecules to sheets of graphene, making it suitable for a range of new applications. Starting with graphene's two-dimensional atomic scale honeycomb lattice of carbon atoms, the Rice team built upon previous graphene community discoveries to transform graphene's one sheet structure into a superlattice.

While carbon is a key part in most organic chemical reactions, graphene poses a problem in that it plays an inert role—not responding to organic chemical reactions. The Rice team solved this dilemma by treating graphene with hydrogen. This classic hydrogenation process restructured the graphene honeycomb lattice into a two-dimensional, semiconducting superlattice called graphane.

The hydrogenation process can then be tailored to make particular patterns in the superlattice to be followed by the attachment of mission specific molecules to where those hydrogen molecules are located. These mission specific molecular catalysts allow for the possibility of a wide variety of functionality. They can not only be used as the basis for creating graphene-based organic chemistry, but tailored for electronics and optics applications, as well as novel types of metamaterials for nanoengineering highly efficient thermoelectric devices and sensors for various chemicals or pathogens. The beauty of this process is the promise it holds for future devices with the ability to efficiently accomplish a wide variety of highly sophisticated functions in one small affordable device.

Dr. Charles Lee, the AFOSR program manager who funded this research, notes that graphene chemistry in general can enable smart materials for many special applications and that this latest effort in particular can contribute to future electronics applications and may be a way to arrive at faster and less energy consuming electronics.

####

About Air Force Office of Scientific Research
The Air Force Office of Scientific Research, located in Arlington, Virginia, continues to expand the horizon of scientific knowledge through its leadership and management of the Air Force's basic research program. As a vital component of the Air Force Research Laboratory, AFOSR's mission is to discover, shape and champion basic science that profoundly impacts the future Air Force.

Like AFOSR on Facebook or follow us on Twitter to stay up-to-date with all of our highlighted research and 60th anniversary events.

For more information, please click here

Contacts:
Dr. Robert White

703-588-0665

Copyright © Air Force Office of Scientific Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Graphene/ Graphite

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Nanoribbons in solutions mimic nature: Rice University scientists test graphene ribbons' abilities to integrate with biological systems August 15th, 2016

Chemistry

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Sensors

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Perpetual 'ice water': Stable solid-liquid state revealed in nanoparticles: Gallium nanoparticles that are both solid and liquid are stable over a range of 1000 degrees Fahrenheit August 5th, 2016

Nanoelectronics

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Materials/Metamaterials

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Unraveling the crystal structure of a -70° Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Semblant to Present at China Mobile Manufacturing Forum 2016 August 25th, 2016

Announcements

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic