Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > How to build doughnuts with Lego blocks: Complex polymer rings with breathtaking nanoscale architecture revealed

Abstract:
Scientists have uncovered how nature minimises energy costs in rings of liquids with an internal nanostructure made of two chemically discordant polymers joined with strong bonds, or di-blocks, deposited on a silicon surface, in an article about to be published in EPJE¹.

How to build doughnuts with Lego blocks: Complex polymer rings with breathtaking nanoscale architecture revealed

New York / Heidelberg | Posted on December 21st, 2011

Josh McGraw and his colleagues from McMaster University, Canada, and the University of Reading, UK, first created rings of di-block polymers that they liken to building doughnuts from Lego blocks due to the nature of the material used. This material has an internal structure discretised like Lego blocks, resulting in rings approximating the seamless shape of a doughnut (see photo at right of previously unseen nanoscale assemblies).
McGraw and his colleagues measured the dynamics of interacting edges in ring structures that display asymmetric steps, i.e., different spacing inside and outside the ring, when initially created. They found that the interaction shaping the ring over time is the repulsion between edges. While the molecular details remain elusive, the source of this repulsion is intuitive: an edge is a defect which perturbs the surface profile with an associated cost to the surface energy.
The edge repulsion prevents two neighbouring edges from getting too near each other. As two isolated edges approach, the perturbation deviates further, thereby deforming the equilibrium edge structure and increasing the free energy. For rings solely subject to the repulsive edge interaction, the authors found that the equilibrium shape of their edges had to be symmetric.
These edges could be considered defects in a material with an otherwise perfect order at the nanoscale. Thus, research based on the elucidation of defect interactions could help scientists trying to eliminate such defects by understanding how these materials self-assemble. Such systems could also provide an ideal basis for creating patterns on the nanoscale, data storage, and nanoelectronics.

Reference

1. McGraw J. D., Rowe I. D.W., Matsen M. W., and Dalnoki-Veress K. (2011). Dynamics of interacting edge defects in copolymer lamellae, European Physical Journal E (EPJ E) DOI 10.1140/epje/i2011-11131-7

####

For more information, please click here

Contacts:
Joan Robinson
Corporate Communications Manager, Springer-Verlag
Tiergartenstrasse 17
69121 Heidelberg
Germany
Phone: +49 6221 487 81 30
Fax: +49 6221 487 68130

Copyright © Springer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

European Physical Journal

Related News Press

News and information

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

Chemistry

Chromium-Centered Cycloparaphenylene Rings as New Tools for Making Functionalized Nanocarbons February 24th, 2015

Stretch and relax! -- Losing 1 electron switches magnetism on in dichromium February 23rd, 2015

A straightforward, rapid and continuous method to protect MOF nanocrystals against water February 9th, 2015

Research shows benefits of silicon carbide for sensors in harsh environments: Advantages identified across industries February 9th, 2015

Memory Technology

Insight into inner magnetic layers: Measurements at BESSY II have shown how spin filters forming within magnetic sandwiches influence tunnel magnetoresistance -- results that can help in designing spintronic component- February 17th, 2015

Dance of the nanovortices February 2nd, 2015

Nano - "Green" metal oxides ... January 13th, 2015

Quantum optical hard drive breakthrough January 8th, 2015

Self Assembly

Nanotubes self-organize and wiggle: Evolution of a nonequilibrium system demonstrates MEPP February 10th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Revealed: How bacteria drill into our cells and kill them December 2nd, 2014

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Nanoelectronics

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Ultra-thin nanowires can trap electron 'twisters' that disrupt superconductors February 24th, 2015

Improved fire detection with new ultra-sensitive, ultraviolet light sensor February 17th, 2015

Nanotechnology facility planned in Lund, Sweden: A production facility for start-ups in the field of nanotechnology may be built in the Science Village in Lund, a world-class research and innovation village that is also home to ESS, the European Spallation Source February 15th, 2015

Discoveries

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Materials/Metamaterials

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Announcements

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

Research partnerships

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

European roadmap for graphene science and technology published February 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE