Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > One box of Girl Scout Cookies worth $15 billion: Rice University lab shows troop how any carbon source can become valuable graphene

Members of Girl Scouts of America Troop 25080 of Houston look at fresh graphene, just out of the furnace and attached to a piece of copper. The troop visited a Rice University lab to watch researchers make graphene, a single-atom-thick sheet of carbon out of Girl Scout Cookies. (Credit: Rice University)
Members of Girl Scouts of America Troop 25080 of Houston look at fresh graphene, just out of the furnace and attached to a piece of copper. The troop visited a Rice University lab to watch researchers make graphene, a single-atom-thick sheet of carbon out of Girl Scout Cookies. (Credit: Rice University)

Abstract:
Scientists can make graphene out of just about anything with carbon -- even Girl Scout Cookies.



One box of Girl Scout Cookies worth $15 billion: Rice University lab shows troop how any carbon source can become valuable graphene

Houston, TX | Posted on August 5th, 2011

Graduate students in the Rice University lab of chemist James Tour proved it when they invited a troop of Houston Girl Scouts to their lab to show them how it's done.

The work is part of a paper published online today by ACS Nano. Rice scientists described how graphene -- a single-atom-thick sheet of the same material in pencil lead -- can be made from just about any carbon source, including food, insects and waste.

The cookie gambit started on a dare when Tour mentioned at a meeting that his lab had produced graphene from table sugar.

"I said we could grow it from any carbon source -- for example, a Girl Scout cookie, because Girl Scout Cookies were being served at the time," Tour recalled. "So one of the people in the room said, 'Yes, please do it. ... Let's see that happen.'"

Members of Girl Scouts of America Troop 25080 came to Rice's Smalley Institute for Nanoscale Science and Technology to see the process. Rice graduate students Gedeng Ruan, lead author of the paper, and Zhengzong Sun calculated that at the then-commercial rate for pristine graphene -- $250 for a two-inch square -- a box of traditional Girl Scout shortbread cookies could turn a $15 billion profit.

"That's a lot of cash!" said an amazed Sydney Shanahan, a member of the troop.

A sheet of graphene made from one box of shortbread cookies would cover nearly 30 football fields, Sun said.

The experiment was a whimsical way to make a serious point: that graphene -- touted as a miracle material for its toughness and conductivity since its discovery by Nobel Prize-winning scientists Andre Geim and Konstantin Novoselov in 2004 -- can be drawn from many sources.

To demonstrate, the researchers subsequently tested a range of materials, as reported in the new paper, including chocolate, grass, polystyrene plastic, insects (a cockroach leg) and even dog feces (compliments of lab manager Dustin James' miniature dachshund, Sid Vicious).

In every case, the researchers were able to make high-quality graphene via carbon deposition on copper foil. In this process, the graphene forms on the opposite side of the foil as solid carbon sources decompose; the other residues are left on the original side. Typically, this happens in about 15 minutes in a furnace flowing with argon and hydrogen gas and turned up to 1,050 degrees Celsius.

Tour expects the cost of graphene to drop quickly as commercial interests develop methods to manufacture it in bulk. Another new paper by Tour and his Rice colleagues described a long-sought way to make graphene-based transparent electrodes by combining graphene with a fine aluminum mesh. The material may replace expensive indium tin oxide as a basic element in flat-panel and touch-screen displays, solar cells and LED lighting.

The experiment the Girl Scouts witnessed "has a lot to do with current research topics in academia and in industry," said Tour, Rice's T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science. "They learned that carbon -- or any element -- in one form can be inexpensive and in another form can be very expensive."

Diamonds are a good example, he said. "You could probably get a very large diamond out of a box of Girl Scout Cookies."

Zhiwei Peng a graduate student in Tour's group, is a co-author of the paper.

Sandia National Laboratory, the Air Force Office of Scientific Research and the Office of Naval Research MURI program funded the research.

####

About Rice University
Located on a 285-acre forested campus in Houston, Texas, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its “unconventional wisdom." With 3,485 undergraduates and 2,275 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to futureowls.rice.edu/images/futureowls/Rice_Brag_Sheet.pdf .

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Related News Press

News and information

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Videos/Movies

Columbia engineers invent breakthrough millimeter-wave circulator IC October 6th, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Graphene/ Graphite

Graphene forged into three-dimensional shapes September 26th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

Materials/Metamaterials

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

On the road to fire-free, lithium-ion batteries made with asphalt October 12th, 2017

Announcements

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Military

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

On the road to fire-free, lithium-ion batteries made with asphalt October 12th, 2017

A dash of gold improves microlasers: The precious metal provides a 'nano' solution for improving disease detection, defense and cybersecurity applications October 9th, 2017

A flexible new platform for high-performance electronics September 29th, 2017

Human Interest/Art

Weizmann Institute of Science Presents: Weizmann Wonder Wander - 4G - is Online June 21st, 2016

Call for NanoArt and Art-Science-Technology Papers June 9th, 2016

Scientists propose non-animal tools for assessing the toxicity of nanomaterials: Particle and Fibre Toxicology publishes recommendations from expert group meeting April 26th, 2016

Are humans the new supercomputer?Today, people of all backgrounds can contribute to solving serious scientific problems by playing computer games. A Danish research group has extended the limits of quantum physics calculations and simultaneously blurred the boundaries between mac April 14th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project