Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > One box of Girl Scout Cookies worth $15 billion: Rice University lab shows troop how any carbon source can become valuable graphene

Members of Girl Scouts of America Troop 25080 of Houston look at fresh graphene, just out of the furnace and attached to a piece of copper. The troop visited a Rice University lab to watch researchers make graphene, a single-atom-thick sheet of carbon out of Girl Scout Cookies. (Credit: Rice University)
Members of Girl Scouts of America Troop 25080 of Houston look at fresh graphene, just out of the furnace and attached to a piece of copper. The troop visited a Rice University lab to watch researchers make graphene, a single-atom-thick sheet of carbon out of Girl Scout Cookies. (Credit: Rice University)

Abstract:
Scientists can make graphene out of just about anything with carbon -- even Girl Scout Cookies.



One box of Girl Scout Cookies worth $15 billion: Rice University lab shows troop how any carbon source can become valuable graphene

Houston, TX | Posted on August 5th, 2011

Graduate students in the Rice University lab of chemist James Tour proved it when they invited a troop of Houston Girl Scouts to their lab to show them how it's done.

The work is part of a paper published online today by ACS Nano. Rice scientists described how graphene -- a single-atom-thick sheet of the same material in pencil lead -- can be made from just about any carbon source, including food, insects and waste.

The cookie gambit started on a dare when Tour mentioned at a meeting that his lab had produced graphene from table sugar.

"I said we could grow it from any carbon source -- for example, a Girl Scout cookie, because Girl Scout Cookies were being served at the time," Tour recalled. "So one of the people in the room said, 'Yes, please do it. ... Let's see that happen.'"

Members of Girl Scouts of America Troop 25080 came to Rice's Smalley Institute for Nanoscale Science and Technology to see the process. Rice graduate students Gedeng Ruan, lead author of the paper, and Zhengzong Sun calculated that at the then-commercial rate for pristine graphene -- $250 for a two-inch square -- a box of traditional Girl Scout shortbread cookies could turn a $15 billion profit.

"That's a lot of cash!" said an amazed Sydney Shanahan, a member of the troop.

A sheet of graphene made from one box of shortbread cookies would cover nearly 30 football fields, Sun said.

The experiment was a whimsical way to make a serious point: that graphene -- touted as a miracle material for its toughness and conductivity since its discovery by Nobel Prize-winning scientists Andre Geim and Konstantin Novoselov in 2004 -- can be drawn from many sources.

To demonstrate, the researchers subsequently tested a range of materials, as reported in the new paper, including chocolate, grass, polystyrene plastic, insects (a cockroach leg) and even dog feces (compliments of lab manager Dustin James' miniature dachshund, Sid Vicious).

In every case, the researchers were able to make high-quality graphene via carbon deposition on copper foil. In this process, the graphene forms on the opposite side of the foil as solid carbon sources decompose; the other residues are left on the original side. Typically, this happens in about 15 minutes in a furnace flowing with argon and hydrogen gas and turned up to 1,050 degrees Celsius.

Tour expects the cost of graphene to drop quickly as commercial interests develop methods to manufacture it in bulk. Another new paper by Tour and his Rice colleagues described a long-sought way to make graphene-based transparent electrodes by combining graphene with a fine aluminum mesh. The material may replace expensive indium tin oxide as a basic element in flat-panel and touch-screen displays, solar cells and LED lighting.

The experiment the Girl Scouts witnessed "has a lot to do with current research topics in academia and in industry," said Tour, Rice's T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science. "They learned that carbon -- or any element -- in one form can be inexpensive and in another form can be very expensive."

Diamonds are a good example, he said. "You could probably get a very large diamond out of a box of Girl Scout Cookies."

Zhiwei Peng a graduate student in Tour's group, is a co-author of the paper.

Sandia National Laboratory, the Air Force Office of Scientific Research and the Office of Naval Research MURI program funded the research.

####

About Rice University
Located on a 285-acre forested campus in Houston, Texas, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its “unconventional wisdom." With 3,485 undergraduates and 2,275 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to futureowls.rice.edu/images/futureowls/Rice_Brag_Sheet.pdf .

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Related News Press

News and information

Rice University boots up powerful microscopes: New electron microscopes will capture images at subnanometer resolution June 29th, 2015

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

June 29th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Videos/Movies

Rice University boots up powerful microscopes: New electron microscopes will capture images at subnanometer resolution June 29th, 2015

Graphene

Angstron Materials Appoints VP for Business Development And Engineering June 27th, 2015

Spain nanotechnology featured at NANO KOREA 2015 June 26th, 2015

Breakthrough graphene production could trigger revolution in artificial skin development June 25th, 2015

Towards graphene biosensors June 24th, 2015

Govt.-Legislation/Regulation/Funding/Policy

X-rays and electrons join forces to map catalytic reactions in real-time: New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions June 29th, 2015

Graphene breakthrough as Bosch creates magnetic sensor 100 times more sensitive than silicon equivalent June 28th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

Building a better semiconductor: Research led by Michigan State University could someday lead to the development of new and improved semiconductors June 27th, 2015

Materials/Metamaterials

Green Chemistry Methods Used in Iran to Produce Zinc Oxide Nanoparticles June 27th, 2015

Spain nanotechnology featured at NANO KOREA 2015 June 26th, 2015

Dais Analytic Unveils New Version of Aqualyte Membrane Technology: Updates to the Basis of the Company's Industry-Changing Nanotechnology Designed to Strengthen Position in Global Air, Energy, and Water Markets June 26th, 2015

Iranian Researchers Synthesize Nanostructures with Controlled Shape, Structure June 25th, 2015

Announcements

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

June 29th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Military

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

Spintronics advance brings wafer-scale quantum devices closer to reality June 24th, 2015

World’s 1st Full-Color, Flexible, Skin-Like Display Developed at UCF June 24th, 2015

Human Interest/Art

Renishaw's inVia confocal Raman microscope system is being used in conservation activities at the Rijksmuseum in Amsterdam, the Netherlands June 16th, 2015

New sensing tech could help detect diseases, fraudulent art, chemical weapons June 1st, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

Winner Announced for NNI’s First ‘EnvisioNano’ Nanotechnology Image Contest May 6th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project