Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Graphene nanotubes revolutionize touch screen use for prosthetic hands

Abstract:


The use of graphene nanotubes in fingerstalls made of electrically conductive silicones allowed young scientists from Motorica to make functional prosthetic hands that can interact with touch screens. The cost of cyber prostheses with such functions is 10 to 15 times lower than that of the nearest comparable solutions priced up to $30.000.

Graphene nanotubes revolutionize touch screen use for prosthetic hands

Luxembourg | Posted on August 3rd, 2021

Today, over 1.5 million handless people live worldwide. According to the World Health Organization, only 1 out of 10 people without hands in the world receives necessary prosthetics, and in developing countries, this figure is down to only 5% of all those in need. “A prosthesis should not be an expensive medical product manufactured at a small scale, but should rather become an affordable wearable electronic gadget just like a smart watch or a smart phone. We do more than just restore the functionality of the hand: we expand it,” says Vasiliy Khlebnikov, Co-Founder and Chief Development Officer at Motorica, a Russian developer and manufacturer of functional “cyber hands.”

A range of the company’s innovative products includes a prosthetic hand providing the ability to operate touch screens. This function was made possible due to fingerstalls made of electrically conductive silicone containing OCSiAl’s TUBALL graphene nanotubes, which can transmit electrical currents from the human body. These fingertips are being installed on body-powered and bionic prostheses in their basic configuration. This technology is effective for all types of modern touch-screen displays.



“More sophisticated and expensive technologies developed for bionic prostheses are available on the market today, where electrical current is generated using internal electronic circuits and sent to a fingerstall. We use electrically conductive silicone, which solves this problem without an additional current source. At a customer’s request, we can manufacture a fingerstall with a touch-screen function for all fingers of the prosthesis, but the index finger or little finger is typically enough,” said Ilya Chekh, Co-Founder and General Director of Motorica.



The scope of application of graphene nanotubes expands further. Flexible and ultra-strong graphene nanotubes resemble a long human hair in their shape; however, they are 50,000 times thinner than a hair. Due to such a unique morphology and characteristics, graphene nanotubes impart a new combination of properties to materials. In addition to silicones, they are used in dozens of other polymers and electrochemical current sources.

####

About OCSiAl Group
OCSiAl is the largest manufacturer of graphene nanotubes. The company’s capacity accounts for 97% of the world’s production capacity of this unique material. Today, OCSiAl employs over 420 people in 20 countries. More than 70 scientists are engaged in research and development in the company. More than 1,500 companies in the world are testing OCSiAl nanotubes and develop new products with them.

For more details visit: tuball.com and ocsial.com

PR contacts:



About Motorica LLC

Motorica LLC develops and manufactures traction and bionic prosthetic hands and arms for children and adults, and generates an ecosystem for users of various rehabilitation devices. Since 2016, the company has manufactured more than 2,600 prostheses for 1,500 people in 12 countries, including unique prosthetics for children who were previously turned down due to the complexity of the injury because no suitable solutions were available.

For more details visit: https://global.motorica.org/

PR contacts:

For more information, please click here

Contacts:
Anastasia Zirka
Senior PR & Advertising Manager
OCSiAl Group
+7 913 989 9239

Copyright © OCSiAl Group

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Graphene/ Graphite

Graphene nanotubes provide a shortcut to add conductivity to powder coatings October 1st, 2021

National 2D materials research center wins NSF funding: Boise State joins Penn State, Rice for Phase II expansion of ATOMIC center August 20th, 2021

National 2D materials research center wins NSF funding: Boise State joins Penn State, Rice for Phase II expansion of ATOMIC center August 20th, 2021

From anti-icing coatings to protection of containers with flammable liquids: heating films with graphene nanotubes enter the market August 20th, 2021

Display technology/LEDs/SS Lighting/OLEDs

New substance classes for nanomaterials: Nano spheres and diamond slivers made of silicon and germanium: Potential applications as nano semiconductor materials September 10th, 2021

Possible Futures

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Nanotubes/Buckyballs/Fullerenes/Nanorods

Graphene nanotubes provide a shortcut to add conductivity to powder coatings October 1st, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

From anti-icing coatings to protection of containers with flammable liquids: heating films with graphene nanotubes enter the market August 20th, 2021

Submerged sensors to control wearable electronics: Scientists in Korea make hand-drawn and flexible pressure sensors that can control a phone from underwater August 18th, 2021

Announcements

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Human Interest/Art

JEOL Announces 2020 Microscopy Image Grand Prize Winners January 7th, 2021

No ink needed for these graphene artworks: Artist employs Rice University lab's laser-induced graphene as medium for ultramodern art May 3rd, 2019

'Quantum Rhapsodies' performance explores quantum physics, its role in our universe April 5th, 2019

Disability Can Be a Superpower in Space Disabled astronauts offer unique solutions to emergencies in space May 17th, 2018

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project