Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > The Chemnitz University of Technology selects JPK's NanoWizard AFM system for the characterization of polymeric and biological materials

Professor Robert Magerle (right) watches Eike-Christian Spitzner working with the
JPK NanoWizard AFM
Professor Robert Magerle (right) watches Eike-Christian Spitzner working with the JPK NanoWizard AFM

Abstract:
JPK Instruments, a world-leading manufacturer of nanoanalytic instrumentation for research in life sciences and soft matter, is pleased to report on the research work from the Chemical Physics group of Professor Robert Magerle of the Chemnitz University of Technology.

The Chemnitz University of Technology selects JPK's NanoWizard AFM system for the characterization of polymeric and biological materials

Berlin, Germany | Posted on August 3rd, 2011

The Chemical Physics Group is part of the Faculty of Natural Sciences. The main research topic is the study of the structure and properties of polymeric materials. Within this, Professor Magerle's goals are to learn about structure, structure-formation processes and properties of both polymeric and biological materials (bone and other collagen based materials) on the nanometer scale. One general lines of research is imaging structure formation processes in these materials in their native state, where the materials are soft or even fluid.

The discovery of new phenomena on the nanometer scale is vital for progress in research and technology. The use of atomic force microscopy, AFM, provides unique opportunities for the study of soft materials including polymers, polymer melts and solutions. It is also well suited for the study of biological materials. For this purpose, Professor Magerle's group developed a microtensile testing setup that allows imaging with AFM local deformation processes in thin polymer films. With this new setup the group discovered locally auxetic behaviour in a thin film of elastomeric polypropylene. This unusual property, which causes the material to expand when it is stretched, appears to be an intrinsic property of certain semi-crystalline polymers.

Having used a variety of different types of AFM in his earlier work, Professor Magerle saw many advantages in moving to the JPK NanoWizard® AFM. Speaking on this, Professor Magerle said "We have chosen the NanoWizard® AFM since it is a tip-scanning system and allows us to place our home-built microtensile testing setup precisely below the AFM tip. JPK has provided us with a custom-built base-plate with an extra cut-out in the center so we could mount our microtensile testing setup. Another aspect I like about the NanoWizard® is its solid mechanical design with a tripod. It is very stable with very little thermal drift. Furthermore, the NanoWizard® can be combined with an optical microscope which we intend to use in future projects."

Collaboration with users is very important to JPK. As Torsten Jähnke, JPK's Chief Technical Officer, says "Working closely with our users enables us to see what new developments might be incorporated in the design of future instruments. Right from day one when we started the company twelve years ago, we have made it the company's policy to closely work with our users and to listen to their feedback as to what they thought of both the hardware and software aspects of our instruments."

JPK develops, engineers and manufactures instrumentation in Germany to the world-recognized standards of German precision engineering, quality and functionality. For further details of the ForceRobot® 300 and other products in the JPK family of nanoscale characterization instrumentation, please visit the JPK web site (www.jpk.com) or Facebook (www.jpk.com/facebook).

####

About JPK Instruments
JPK Instruments AG is a world-leading manufacturer of nanoanalytic instruments - particularly atomic force microscope (AFM) systems and optical tweezers - for a broad range of applications reaching from soft matter physics to nano-optics, from surface chemistry to cell and molecular biology. From its earliest days applying atomic force microscope (AFM) technology, JPK has recognized the opportunities provided by nanotechnology for transforming life sciences and soft matter research. This focus has driven JPK’s success in uniting the worlds of nanotechnology tools and life science applications by offering cutting-edge technology and unique applications expertise. Headquartered in Berlin and with direct operations in Dresden, Cambridge (UK), Singapore, Tokyo (Japan) and Paris (France), JPK maintains a global network of distributors and support centers and provides on the spot applications and service support to an ever-growing community of researchers.

For further information, please contact JPK direct or their marketing partners, NetDyaLog, who will also provide high resolution images for your use.

For more information, please click here

Contacts:
Jezz Leckenby
NetDyaLog Limited
T: +44 (0) 1799 521881
M: +44 (0) 7843 012997

or
Claudia Boettcher
JPK Instruments
T: +49 (0) 30 5331 12070

Copyright © JPK Instruments AG

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

New-Contracts/Sales/Customers

Bruker Light-Sheet Microscopes at Major Comprehensive Cancer Center: New Advanced Imaging Center Powered by Two MuVi and LCS SPIM Microscopes March 25th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Veeco Announces Aledia Order of 300mm MOCVD Equipment for microLED Displays: Propel™ Platform First 300mm System with EFEM Designed for Advanced Display Applications October 20th, 2020

GREENWAVES TECHNOLOGIES Announces Next Generation GAP9 Hearables Platform Using GLOBALFOUNDRIES 22FDX Solution October 16th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project