Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > The Chemnitz University of Technology selects JPK's NanoWizard AFM system for the characterization of polymeric and biological materials

Professor Robert Magerle (right) watches Eike-Christian Spitzner working with the
JPK NanoWizard AFM
Professor Robert Magerle (right) watches Eike-Christian Spitzner working with the JPK NanoWizard AFM

Abstract:
JPK Instruments, a world-leading manufacturer of nanoanalytic instrumentation for research in life sciences and soft matter, is pleased to report on the research work from the Chemical Physics group of Professor Robert Magerle of the Chemnitz University of Technology.

The Chemnitz University of Technology selects JPK's NanoWizard AFM system for the characterization of polymeric and biological materials

Berlin, Germany | Posted on August 3rd, 2011

The Chemical Physics Group is part of the Faculty of Natural Sciences. The main research topic is the study of the structure and properties of polymeric materials. Within this, Professor Magerle's goals are to learn about structure, structure-formation processes and properties of both polymeric and biological materials (bone and other collagen based materials) on the nanometer scale. One general lines of research is imaging structure formation processes in these materials in their native state, where the materials are soft or even fluid.

The discovery of new phenomena on the nanometer scale is vital for progress in research and technology. The use of atomic force microscopy, AFM, provides unique opportunities for the study of soft materials including polymers, polymer melts and solutions. It is also well suited for the study of biological materials. For this purpose, Professor Magerle's group developed a microtensile testing setup that allows imaging with AFM local deformation processes in thin polymer films. With this new setup the group discovered locally auxetic behaviour in a thin film of elastomeric polypropylene. This unusual property, which causes the material to expand when it is stretched, appears to be an intrinsic property of certain semi-crystalline polymers.

Having used a variety of different types of AFM in his earlier work, Professor Magerle saw many advantages in moving to the JPK NanoWizard® AFM. Speaking on this, Professor Magerle said "We have chosen the NanoWizard® AFM since it is a tip-scanning system and allows us to place our home-built microtensile testing setup precisely below the AFM tip. JPK has provided us with a custom-built base-plate with an extra cut-out in the center so we could mount our microtensile testing setup. Another aspect I like about the NanoWizard® is its solid mechanical design with a tripod. It is very stable with very little thermal drift. Furthermore, the NanoWizard® can be combined with an optical microscope which we intend to use in future projects."

Collaboration with users is very important to JPK. As Torsten Jähnke, JPK's Chief Technical Officer, says "Working closely with our users enables us to see what new developments might be incorporated in the design of future instruments. Right from day one when we started the company twelve years ago, we have made it the company's policy to closely work with our users and to listen to their feedback as to what they thought of both the hardware and software aspects of our instruments."

JPK develops, engineers and manufactures instrumentation in Germany to the world-recognized standards of German precision engineering, quality and functionality. For further details of the ForceRobot® 300 and other products in the JPK family of nanoscale characterization instrumentation, please visit the JPK web site (www.jpk.com) or Facebook (www.jpk.com/facebook).

####

About JPK Instruments
JPK Instruments AG is a world-leading manufacturer of nanoanalytic instruments - particularly atomic force microscope (AFM) systems and optical tweezers - for a broad range of applications reaching from soft matter physics to nano-optics, from surface chemistry to cell and molecular biology. From its earliest days applying atomic force microscope (AFM) technology, JPK has recognized the opportunities provided by nanotechnology for transforming life sciences and soft matter research. This focus has driven JPK’s success in uniting the worlds of nanotechnology tools and life science applications by offering cutting-edge technology and unique applications expertise. Headquartered in Berlin and with direct operations in Dresden, Cambridge (UK), Singapore, Tokyo (Japan) and Paris (France), JPK maintains a global network of distributors and support centers and provides on the spot applications and service support to an ever-growing community of researchers.

For further information, please contact JPK direct or their marketing partners, NetDyaLog, who will also provide high resolution images for your use.

For more information, please click here

Contacts:
Jezz Leckenby
NetDyaLog Limited
T: +44 (0) 1799 521881
M: +44 (0) 7843 012997

or
Claudia Boettcher
JPK Instruments
T: +49 (0) 30 5331 12070

Copyright © JPK Instruments AG

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Imaging

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Controlled electron pulses November 30th, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

Announcements

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Tools

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Controlled electron pulses November 30th, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

News from Quorum: The Agricultural Research Service of the USDA uses a Quorum Cryo-SEM preparation system for the study of mites, ticks and other soft bodied organisms November 22nd, 2016

New-Contracts/Sales/Customers

Cetim Facility Receives Bruker Contour CMM Dimensional Analysis System: New Optical Coordinate Measurement Technology Enables High-Precision 3D Scanning November 16th, 2016

Industrial Nanotech, Inc. Announces Plans to Spin Off New Product Line to Major Paint Compan November 9th, 2016

Leti Provides New Low-noise Image Technology to French SME PYXALIS; Will Be Demonstrated at Vision 2016 in Stuttgart November 3rd, 2016

DryWired's Liquid Nanotint to be the first nano-insulation in a Federal building: 250,000 federal buildings, most with uninsulated glass October 12th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project