Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Dream screens from graphene: Rice University develops indium-free transparent, flexible electrodes

A hybrid material that combines a fine aluminum mesh with a single-atom-thick layer of graphene outperforms materials common to current touch screens and solar cells. The transparent, flexible electrodes were developed in the lab of Rice University chemist James Tour. (Credit: Yu Zhu/Rice University)
A hybrid material that combines a fine aluminum mesh with a single-atom-thick layer of graphene outperforms materials common to current touch screens and solar cells. The transparent, flexible electrodes were developed in the lab of Rice University chemist James Tour. (Credit: Yu Zhu/Rice University)

Abstract:
Flexible, transparent electronics are closer to reality with the creation of graphene-based electrodes at Rice University.

Dream screens from graphene: Rice University develops indium-free transparent, flexible electrodes

Houston, TX | Posted on August 1st, 2011

The lab of Rice chemist James Tour lab has created thin films that could revolutionize touch-screen displays, solar panels and LED lighting. The research was reported in the online edition of ACS Nano.

Flexible, see-through video screens may be the "killer app" that finally puts graphene -- the highly touted single-atom-thick form of carbon -- into the commercial spotlight once and for all, Tour said. Combined with other flexible, transparent electronic components being developed at Rice and elsewhere, the breakthrough could lead to computers that wrap around the wrist and solar cells that wrap around just about anything.

The lab's hybrid graphene film is a strong candidate to replace indium tin oxide (ITO), a commercial product widely used as a transparent, conductive coating. It's the essential element in virtually all flat-panel displays, including touch screens on smart phones and iPads, and is part of organic light-emitting diodes (OLEDs) and solar cells.

ITO works well in all of these applications, but has several disadvantages. The element indium is increasingly rare and expensive. It's also brittle, which heightens the risk of a screen cracking when a smart phone is dropped and further rules ITO out as the basis for flexible displays.

The Tour Lab's thin film combines a single-layer sheet of highly conductive graphene with a fine grid of metal nanowire. The researchers claim the material easily outperforms ITO and other competing materials, with better transparency and lower resistance to electric current.

"Many people are working on ITO replacements, especially as it relates to flexible substrates," said Tour, Rice's T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science. "Other labs have looked at using pure graphene. It might work theoretically, but when you put it on a substrate, it doesn't have high enough conductivity at a high enough transparency. It has to be assisted in some way."

Conversely, said postdoctoral researcher Yu Zhu, lead author of the new paper, fine metal meshes show good conductivity, but gaps in the nanowires to keep them transparent make them unsuitable as stand-alone components in conductive electrodes.

But combining the materials works superbly, Zhu said. The metal grid strengthens the graphene, and the graphene fills all the empty spaces between the grid. The researchers found a grid of five-micron nanowires made of inexpensive, lightweight aluminum did not detract from the material's transparency.

"Five-micron grid lines are about a 10th the size of a human hair, and a human hair is hard to see," Tour said.

Tour said metal grids could be easily produced on a flexible substrate via standard techniques, including roll-to-roll and ink-jet printing. Techniques for making large sheets of graphene are also improving rapidly, he said; commercial labs have already developed a roll-to-roll graphene production technique.

"This material is ready to scale right now," he said.

The flexibility is almost a bonus, Zhu said, due to the potential savings of using carbon and aluminum instead of expensive ITO. "Right now, ITO is the only commercial electrode we have, but it's brittle," he said. "Our transparent electrode has better conductivity than ITO and it's flexible. I think flexible electronics will benefit a lot."

In tests, he found the hybrid film's conductivity decreases by 20 to 30 percent with the initial 50 bends, but after that, the material stabilizes. "There were no significant variations up to 500 bending cycles," Zhu said. More rigorous bending test will be left to commercial users, he said.

"I don't know how many times a person would roll up a computer," Tour added. "Maybe 1,000 times? Ten thousand times? It's hard to see how it would wear out in the lifetime you would normally keep a device."

The film also proved environmentally stable. When the research paper was submitted in late 2010, test films had been exposed to the environment in the lab for six months without deterioration. After a year, they remain so.

"Now that we know it works fine on flexible substrates, this brings the efficacy of graphene a step up to its potential utility," Tour said.

Rice graduate students Zhengzong Sun and Zheng Yan and former postdoctoral researcher Zhong Jin are co-authors of the paper.

The Office of Naval Research Graphene MURI program, the Air Force Research Laboratory through the University Technology Corporation, the Air Force Office of Scientific Research and the Lockheed Martin Corp./LANCER IV program supported the research.

####

About Rice University
Located on a 285-acre forested campus in Houston, Texas, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its “unconventional wisdom." With 3,485 undergraduates and 2,275 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to futureowls.rice.edu/images/futureowls/Rice_Brag_Sheet.pdf.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Related News Press

News and information

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

Graphene

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Graphenea opens US branch October 16th, 2014

Videos/Movies

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Ucore's McKenzie to Deliver Presentation to Rare Earths Conference in Singapore as Highlight of Fall 2014 Marketplace Schedule October 19th, 2014

Flexible Electronics

Crumpled graphene could provide an unconventional energy storage: Two-dimensional carbon “paper” can form stretchable supercapacitors to power flexible electronic devices October 4th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

'Greener,' low-cost transistor heralds advance in flexible electronics September 24th, 2014

Future flexible electronics based on carbon nanotubes: Study in Applied Physics Letters show how to improve nanotube transistor and circuit performance with fluoropolymers September 23rd, 2014

Govt.-Legislation/Regulation/Funding/Policy

'Electronic skin' could improve early breast cancer detection October 29th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanoelectronics

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Discoveries

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanoparticles Display Ability to Improve Efficiency of Filters October 28th, 2014

Announcements

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

Military

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NanoTechnology for Defense (NT4D) October 22nd, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE