Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Piece of Cake: Arrays of Long Nanotubes May Help Measure Terahertz Laser Power

"Cupcakes" of vertically aligned carbon nanotube arrays (VANTAs) grown on silicon, which appears blue in the photo. A chunk of VANTA can be sliced from the silicon with a razor blade and, using the blade as a spatula, easily moved to the top of a laser power detector. The very dark nanotube coating absorbs terahertz laser light.
Credit: Lehman/NIST
"Cupcakes" of vertically aligned carbon nanotube arrays (VANTAs) grown on silicon, which appears blue in the photo. A chunk of VANTA can be sliced from the silicon with a razor blade and, using the blade as a spatula, easily moved to the top of a laser power detector. The very dark nanotube coating absorbs terahertz laser light.

Credit: Lehman/NIST

Abstract:
Terahertz radiation can penetrate numerous materials—plastic, clothing, paper and some biological tissues—making it an attractive candidate for applications such as concealed weapons detection, package inspection and imaging skin tumors. However, to date there is no standard method for measuring the absolute output power of terahertz lasers, one source of this type of radiation. Now, researchers at the National Institute of Standards and Technology (NIST) have found that dense arrays of extra-long carbon nanotubes absorb nearly all light of long wavelengths, and thus are promising coatings for prototype detectors intended to measure terahertz laser power.*

Piece of Cake: Arrays of Long Nanotubes May Help Measure Terahertz Laser Power

Boulder, CO | Posted on July 21st, 2011

The research is part of NIST's effort to develop the first U.S. reference standards** for calibrating lasers that operate in the terahertz range, from the far infrared at wavelengths of 100 micrometers to the edge of the microwave band at 1 millimeter.

"There is no measurement traceability for absolute power for terahertz laser sources," NIST project leader John Lehman says. "We have customers asking for the calibrations. This coating looks viable for terahertz laser power detectors."

The coating, called a VANTA (vertically aligned carbon nanotube array), has several desirable properties. Most obviously, it is easy to handle. The nanotubes are tens of micrometers to over a millimeter long, so a dense layer is visible without a microscope. A chunk of VANTA can be cut, lifted, and carried like a piece of cake, making it easy to transfer from a silicon surface where the tubes are grown to a laser power detector.

Most importantly, the coating is very dark. The NIST team evaluated three VANTA samples with average lengths of 40 and 150 micrometers and 1.5 millimeters (mm) and found that longer tubes reflect less light. The 1.5 mm version reflects almost no light—just 1 percent at a wavelength of 394 micrometers. This result, the first-ever evaluation of a VANTA's reflectance at that terahertz wavelength, indicates that virtually all arriving laser light is absorbed, which would enable highly accurate measurements of laser power.

The 1.5 mm VANTA absorbs more light than comparable coatings such as gold black, but more work is needed to calculate uncertainties and determine effects of factors such as light angle. The project extends NIST's long history in laser power measurements and Lehman's recent advances in ultradark nanotube coatings.***

VANTAs also have desirable thermal properties. NIST researchers found that the material absorbs and releases heat quickly compared to other black coatings, which will make the detectors more responsive and quicker to produce signals. Otherwise, a coating thick enough to absorb long wavelengths of light would not efficiently transmit heat to the detector.

In developing the capability for terahertz laser radiometry, NIST is building a terahertz laser designed for routine measurements and a detector called a thermopile to measure the laser's power. This simple detector design produces a voltage when heat is applied to a junction of two dissimilar metals. NIST researchers used the VANTA to coat a prototype thermopile. Further research is planned to design detectors that might be used as reference standards.

* J.H. Lehman, B. Lee and E.N. Grossman. Far infrared thermal detectors for radiometry using a carbon nanotube array. Applied Optics. Posted online July 18, 2011.

** The Physikalisch-Technische Bundesanstalt (PTB), the German national metrology institute, operates a detector based measurement facility for characterization and calibration of THz-detectors at 2.52 THz. The available spectral range for detector calibration will be expanded to 1 THz to 5 THz in the future.

*** See NIST Tech Beat article "Extreme Darkness: Carbon Nanotube Forest Covers NIST's Ultra-dark Detector," August 17, 2010, at www.nist.gov/pml/optoelectronics/dark_081710.cfm.

####

About NIST
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Laura Ost
303-497-4880

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Laboratories

Atomic Flaws Create Surprising, High-Efficiency UV LED Materials: Subtle surface defects increase UV light emission in greener, more cost-effective LED and catalyst materials February 8th, 2018

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

Laboratory Management Web Application Goes Nationwide January 9th, 2018

NRL improves optical efficiency in nanophotonic devices January 4th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Touchy nanotubes work better when clean: Rice, Swansea scientists show that decontaminating nanotubes can simplify nanoscale devices January 4th, 2018

Paving the way for a non-electric battery to store solar energy: UMass Amherst scientists say a polymer chain organized like a string of Christmas lights assists energy storage December 22nd, 2017

Nanotubes go with the flow to penetrate brain tissue: Rice University scientists, engineers develop microfluidic devices, microelectrodes for gentle implantation December 19th, 2017

Discoveries

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Announcements

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Homeland Security

A dash of gold improves microlasers: The precious metal provides a 'nano' solution for improving disease detection, defense and cybersecurity applications October 9th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

Nanobionic spinach plants can detect explosives: After sensing dangerous chemicals, the carbon-nanotube-enhanced plants send an alert November 2nd, 2016

Military

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Silk fibers could be high-tech ‘natural metamaterials’ January 31st, 2018

Researchers use sound waves to advance optical communication January 22nd, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Photonics/Optics/Lasers

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project