Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Controlled production of nanometric drops

Abstract:
When a drop falls on a lotus flower it remains on the surface without wetting it. This is due, firstly, to the chemical components of the leaves of this plant, which are hydrophobic and therefore repel water, and, secondly, to the nanostructure of the surface, which augments the repellent effect. Taking these nanostructural properties as a starting point, researchers from the Faculty of Physics at the University of Barcelona have carried out a study - the results of which have been published in the journal Nature Materials - in which they demonstrate the physical conditions required for the controlled production of drops between the micro- and nanoscales.

Controlled production of nanometric drops

Barcelona, Spain | Posted on April 13th, 2011

The study details the different physical conditions needed to destabilize a fluid and create droplets according to the wetting properties of the surface it is in contact with. Ignasi Pagonabarraga, a lecturer with the Department of Fundamental Physics and one of the authors of the study, explains that "the interaction of the fluid with the surface can be used to control the size of the drops and the time they take to form. Although there are other methods for creating micrometric droplets, the affinity of liquids to solid surfaces creates a more versatile environment for the production and control of drops down to the nanoscale".

According to Aurora Hernández-Machado, a lecturer with the UB's Department of Structure and Constituents of Matter and co-author of the study, "miniaturization in liquids is important in increasing efficiency and optimizing the rate of consumption of substances such as pharmaceutical products, cosmetics and ink, which would enable us to lower the cost of processes associated with the production and control of these products. In addition, the physical model, which we could define as a microfluidic dispenser for various substances, allows us to overcome the limitations traditionally associated with drop formation processes and to create submicrometre-scale droplets".

One of the fields to which this type of process is most readily applicable is the development of lab-on-a-chip (LOC) devices, which integrate a range of laboratory analysis functions into a miniaturized chip format and need only very small volumes of liquid to perform the analyses. The dynamics involved in the formation of submicrometre-scale drops have various technological applications in other fields, for example in controlled drug administration or in the creation of emulsions such as those used in certain types of cosmetic products formed by micro-droplets of substances with specific properties within another fluid. Other applications include ink distribution in printers.

In physical terms, the drops are formed due to instability in the fluid. The study describes a wetting-based destabilization mechanism of forced microfilaments that affects adherence to difference surfaces. The researchers have been able to establish the balance of forces that determines the drop emission mechanism, which involves the capillarity of the fluid, the viscous friction of the solid surface and gravity. This balance and the size of the liquid filaments determine the size of the drops emitted, which in some cases are nanometric. It has also been observed that the emission of drops depends to a great extent on the static wetting angle, that is, the angle that the drop makes with the contact surface. The greater this angle the higher the degree of hydrophobia of the surface in question.

In the experiments carried out for the study, focusing on water in air, the team of researchers has demonstrated the operation of the microfluidic model and created drops at the micrometre scale, but the model is also capable of producing nanometric droplets. Tests have been carried out using a range of supports from hydrophilic surfaces to superhydrophobic substrates, and the authors show how wetting can be used to pinpoint the wetting-controlled emission point. By varying the chemical and nanostructural properties of the surface in question, it is possible to alter the wetting angle and control the drop formation dynamics.

Full bibliographic information

Rodrigo Ledesma-Aguilar, Raul Nistal, Aurora Hernández-Machado e Ignasi Pagonabarraga. «Controlled drop emission by wetting properties in driven liquid filaments». Nature Materials (abril, 2011). DOI: 10.1038/NMAT2998

####

For more information, please click here

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Physics

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Halas wins American Physical Society's Lilienfeld Prize: Rice University nanoscientist honored for pioneering research in plasmonics October 23rd, 2017

Lab-on-a-chip

Researchers make flexible glass for tiny medical devices: Glass can bend over and over again on a nanoscale March 27th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

New graphene-based system could help us see electrical signaling in heart and nerve cells: Berkeley-Stanford team creates a system to visualize faint electric fields December 19th, 2016

Discoveries

Quantum memory with record-breaking capacity based on laser-cooled atoms December 15th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Materials/Metamaterials

Record high photoconductivity for new metal-organic framework material December 15th, 2017

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

Creating a new kind of metallic glass December 7th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017

Announcements

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Water

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Magnetized viruses attack harmful bacteria: Rice, China team uses phage-enhanced nanoparticles to kill bacteria that foul water treatment systems August 2nd, 2017

Bacteria-coated nanofiber electrodes clean pollutants in wastewater July 1st, 2017

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project