Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanotechnology Students Make World's Smallest Images of Stephen Colbert

The smallest likeness of Stephen Colbert in the world, "Micro Colbert". 
Four micro sized images of Stephen were fabricated in a clean room environment on a silicon wafer by two nanotech undergrad students at the University of Waterloo.
The smallest likeness of Stephen Colbert in the world, "Micro Colbert". Four micro sized images of Stephen were fabricated in a clean room environment on a silicon wafer by two nanotech undergrad students at the University of Waterloo.

Abstract:
The world's smallest images of Stephen Colbert were made by two undergraduate nanotechnology engineering students. John Maier and Erin Bedford fabricated four micro sized images of Stephen Colbert in a clean room at the University of Waterloo.

Nanotechnology Students Make World's Smallest Images of Stephen Colbert

Waterloo, Canada | Posted on April 6th, 2011

The world's smallest images of Stephen Colbert were made by two undergraduate nanotechnology engineering students. The students, John Maier and Erin Bedford, fabricated four micro sized images of Stephen Colbert (www.microcolbert.com). The two students are graduating from the Nanotechnology Engineering program at the University of Waterloo. The smallest of the four images measured approximately 110μm by 130μm, while the largest measured 1.8mm by 2.3mm. The smallest feature size on the smallest image measured approximately 400nm across. Images were captured of each Colbert image using a Scanning Electron Microscope (SEM). The Micro Colbert images were made from a micrometer thin layer of aluminum that was sputtered on to the substrate through a photoresist pattern.

A layer of chrome metal was deposited on a blank wafer followed by a silicon nitride (SiN) layer, grown using plasma-enhanced chemical vapor deposition (PECVD). The SiN layer was then dry etched using reactive-ion etching (RIE). A layer of aluminum was then deposited on the wafer using sputtering and treated, completing the wafer fabrication. Lithography techniques were used throughout the process to generate the designed patterns.

John Maier (www.johnmaier.com) and Erin Bedford (ca.linkedin.com/pub/erin-bedford/16/2b4/614) are part of the second graduating class of the new Nanotechnology Engineering program at the University of Waterloo. "Hopefully Stephen will cover it on the show and help to get kids excited about nanotechnology," John said. During the course of their co-op degree, Erin has interned at the University of Albany, Xerox Research Center of Canada and EMPA in Switzerland. John has interned at Broadcom Corporation, the National Research Council of Canada and Facebook.

For more information on Micro Colbert please visit the website www.microcolbert.com, or follow the pages on Facebook or Twitter.

####

For more information, please click here

Contacts:
John Maier

Copyright © John Maier

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Imaging

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

Chip Technology

Photon-pair source with pump rejection filter fabricated on single CMOS chip: New integrated source provides critical component for chip-based quantum photonic systems October 15th, 2021

Ultrafast magnetism: heating magnets, freezing time: This study on Gadolinium is completing a series of experiments on Nickel, Iron-Nickel Alloys: The results are useful for developing ultrafast data storage devices October 15th, 2021

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Nanoscale lattices flow from 3D printer: Rice University engineers create nanostructures of glass and crystal for electronics, photonics October 15th, 2021

Announcements

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Human Interest/Art

Graphene nanotubes revolutionize touch screen use for prosthetic hands August 3rd, 2021

JEOL Announces 2020 Microscopy Image Grand Prize Winners January 7th, 2021

No ink needed for these graphene artworks: Artist employs Rice University lab's laser-induced graphene as medium for ultramodern art May 3rd, 2019

'Quantum Rhapsodies' performance explores quantum physics, its role in our universe April 5th, 2019

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

With a zap of light, system switches objects' colors and patterns: "Programmable matter" technique could enable product designers to churn out prototypes with ease May 6th, 2021

New 3D-Bioprinter + Bioink Use Living Cells Straight From Culture Plate: Cell models mimicking natural tissue topography herald new era for biomedical research April 13th, 2021

Weak force has strong impact on nanosheets: Rice lab finds van der Waals force can deform nanoscale silver for optics, catalytic use December 15th, 2020

Materials scientists learn how to make liquid crystal shape-shift September 25th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project