Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Glidewell Laboratories Announces Nanozirconia Technology Breakthrough

High-resolution transmission electron microscopy (HRTEM) image of Glidewell Laboratories' 3 nm nanocrystalline zirconia material produced by gas-phase condensation "bottom-up" nanotechnology.
High-resolution transmission electron microscopy (HRTEM) image of Glidewell Laboratories' 3 nm nanocrystalline zirconia material produced by gas-phase condensation "bottom-up" nanotechnology.

Abstract:
Glidewell Dental Lab's Continued Research and Development Efforts Lead to New Ceramic Nanotechnology

Glidewell Laboratories Announces Nanozirconia Technology Breakthrough

Newport Beach, CA | Posted on February 15th, 2011

Glidewell Laboratories, industry-leading provider of dental lab products and services and manufacturer of BruxZir Solid Zirconia dental material, Research & Development team has moved closer to producing transparent nanozirconia by successfully synthesizing 3 nm zirconia nanocrystals produced by "bottom-up" nanotechnology.

The research team, led by Ken Knapp, Glidewell Laboratories' program manager and lead researcher, developed a method for producing non-agglomerated 3 nm nanocrystalline zirconia powder using a revolutionary bottom-up nanotechnology technique known as "gas-phase condensation." The focused effort of the nanozirconia research team over the last year has resulted in new discoveries about the nature of sub-5 nm nanozirconia crystals. Glidewell Laboratories has filed a U.S. patent application on the new ceramic nanotechnology (patent pending). This method consists of colliding high-energy yttrium, zirconium and oxygen ions together in an energetic gaseous phase and condensing yttria zirconia nanocrystal particles resulting from atomic collisions during flight in the gas phase. The condensed yttria zirconia nanocrystal particles are separated from the gas phase and collected in the form of nanocrystalline powder. According to Knapp, "The key to making transparent polycrystalline zirconia material is starting with a non-agglomerated yttria zirconia primary crystal size less than 5 nm. Glidewell's new gas-phase condensation nanotechnology for producing nanozirconia will allow us to overcome the fundamental polycrystalline birefringence barrier to manufacturing a transparent, high-strength monolithic dental ceramic product."

Conventional nanozirconia powder is typically produced by "top-down" nanotechnology methods such as hydrothermal synthesis (calcining followed by ball-milling). Many of the nanozirconia powders available on the market today are comprised of hard-agglomerated nanocrystals with a primary crystal size of approximately 30 nm. After sintering, typical nanozirconia grain size is between 500-1000 nm. The top-down method is widely used to produce nanocrystalline materials by breaking down larger particles and agglomerates into smaller ones, typically by ball-milling. The bottom-up nanotechnology method builds up nanoscale materials atom by atom or molecule by molecule. Bottom-up nanoscale science and technology is the state of the art for producing the next generation nanoscale materials and devices. The bottom-up method has a lower scale limit on the atomic or molecular level. Additionally, the bottom-up-produced nanocrystalline structures are not altered during the process of forming the nanoscale crystals, whereas top-down methods alter the crystal structure and surface chemistry.

Robin Carden, senior director of Glidewell Laboratories materials research and development said, "Glidewell's nanozirconia material produced by the gas-phase condensation method overcomes the inherent sub-5 nm crystal size production barrier and hard-agglomeration formations found in conventional nanocrystalline ceramic processing."

Common zirconia dental ceramics are translucent and not transparent as a result of light-scattering during transmission by birefringence and porosity. Light-scattering by birefringence is an intrinsic property of polycrystalline optical materials with an anisotropic crystalline index of refraction. Birefringence is reduced dramatically when the sintered grain size is reduced below 100 nm. Porosity causes light-scattering in the visible spectrum between 400-700 nm, which reduces the zirconia optical transparency.

The future for high-strength esthetic nanozirconia is agglomerate-free sub-5 nm powder. James Glidewell, CDT, CEO and president of Glidewell Laboratories said, "Our continued nanozirconia research efforts, from the fundamental way that zirconia nanocrystals are formed to new sintering methods, will allow us to extend our BruxZirŽ product life into the next generation of nanocrystalline dental ceramics."

For a closer look at BruxZir Solid Zircoinia, visit www.bruxzir.com

####

About Glidewell Laboratories
Glidewell Laboratories is a privately owned corporation that has more than 40 years of history as a provider of high-quality services and products to dental laboratories nationwide. It has its own 73-person Research and Development team and is the most resourceful dental laboratory in the world. Its newly developed CAD/CAM processing capabilities are recognized as among the most advanced in the industry. To view our large selection of products and services, visit www.glidewelldental.com

For more information, please click here

Copyright © Glidewell Laboratories

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Products

PEN Inc. Announces Strategy to Broaden Clarity Branded Products Business February 4th, 2016

Graphenea increases capacity, reduces prices January 25th, 2016

Corrosion-Fighter Tesla NanoCoatings Pioneers 2x1 Wet-on-Wet Process January 20th, 2016

Iranian Company Mass-Produces Self-Cleaning Nanopaints November 14th, 2015

Materials/Metamaterials

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Announcements

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Patents/IP/Tech Transfer/Licensing

Joint Efforts by Iranian, Malaysian Scientists Produce Antibacterial Coatings for Isolated Areas February 4th, 2016

Silicon-based metamaterials could bring photonic circuits February 1st, 2016

Therapeutic Solutions International Licenses Dexosome Clinical Stage Cancer Immunotherapy Product From Gustave Roussy European Cancer Centre: FDA Cleared Immuno-Oncology Technology to Resume Clinical Development for Solid Tumor Patients January 27th, 2016

Light-activated nanoparticles prove effective against antibiotic-resistant 'superbugs' January 19th, 2016

Dental

Nano-shells deliver molecules that tell bone to repair itself January 16th, 2016

The artificial materials that came in from the cold: Berkeley Lab researchers develop nature-mimicking freeze-casting technique for fabricating advanced porous materials December 14th, 2015

Graphene oxide could make stronger dental fillings: Study reveals new filling material material that is not toxic to teeth December 4th, 2015

Details from the inner life of a tooth: New X-ray method uses scattering to visualize nanostructures November 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic