Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Glidewell Laboratories Announces Nanozirconia Technology Breakthrough

High-resolution transmission electron microscopy (HRTEM) image of Glidewell Laboratories' 3 nm nanocrystalline zirconia material produced by gas-phase condensation "bottom-up" nanotechnology.
High-resolution transmission electron microscopy (HRTEM) image of Glidewell Laboratories' 3 nm nanocrystalline zirconia material produced by gas-phase condensation "bottom-up" nanotechnology.

Abstract:
Glidewell Dental Lab's Continued Research and Development Efforts Lead to New Ceramic Nanotechnology

Glidewell Laboratories Announces Nanozirconia Technology Breakthrough

Newport Beach, CA | Posted on February 15th, 2011

Glidewell Laboratories, industry-leading provider of dental lab products and services and manufacturer of BruxZir Solid Zirconia dental material, Research & Development team has moved closer to producing transparent nanozirconia by successfully synthesizing 3 nm zirconia nanocrystals produced by "bottom-up" nanotechnology.

The research team, led by Ken Knapp, Glidewell Laboratories' program manager and lead researcher, developed a method for producing non-agglomerated 3 nm nanocrystalline zirconia powder using a revolutionary bottom-up nanotechnology technique known as "gas-phase condensation." The focused effort of the nanozirconia research team over the last year has resulted in new discoveries about the nature of sub-5 nm nanozirconia crystals. Glidewell Laboratories has filed a U.S. patent application on the new ceramic nanotechnology (patent pending). This method consists of colliding high-energy yttrium, zirconium and oxygen ions together in an energetic gaseous phase and condensing yttria zirconia nanocrystal particles resulting from atomic collisions during flight in the gas phase. The condensed yttria zirconia nanocrystal particles are separated from the gas phase and collected in the form of nanocrystalline powder. According to Knapp, "The key to making transparent polycrystalline zirconia material is starting with a non-agglomerated yttria zirconia primary crystal size less than 5 nm. Glidewell's new gas-phase condensation nanotechnology for producing nanozirconia will allow us to overcome the fundamental polycrystalline birefringence barrier to manufacturing a transparent, high-strength monolithic dental ceramic product."

Conventional nanozirconia powder is typically produced by "top-down" nanotechnology methods such as hydrothermal synthesis (calcining followed by ball-milling). Many of the nanozirconia powders available on the market today are comprised of hard-agglomerated nanocrystals with a primary crystal size of approximately 30 nm. After sintering, typical nanozirconia grain size is between 500-1000 nm. The top-down method is widely used to produce nanocrystalline materials by breaking down larger particles and agglomerates into smaller ones, typically by ball-milling. The bottom-up nanotechnology method builds up nanoscale materials atom by atom or molecule by molecule. Bottom-up nanoscale science and technology is the state of the art for producing the next generation nanoscale materials and devices. The bottom-up method has a lower scale limit on the atomic or molecular level. Additionally, the bottom-up-produced nanocrystalline structures are not altered during the process of forming the nanoscale crystals, whereas top-down methods alter the crystal structure and surface chemistry.

Robin Carden, senior director of Glidewell Laboratories materials research and development said, "Glidewell's nanozirconia material produced by the gas-phase condensation method overcomes the inherent sub-5 nm crystal size production barrier and hard-agglomeration formations found in conventional nanocrystalline ceramic processing."

Common zirconia dental ceramics are translucent and not transparent as a result of light-scattering during transmission by birefringence and porosity. Light-scattering by birefringence is an intrinsic property of polycrystalline optical materials with an anisotropic crystalline index of refraction. Birefringence is reduced dramatically when the sintered grain size is reduced below 100 nm. Porosity causes light-scattering in the visible spectrum between 400-700 nm, which reduces the zirconia optical transparency.

The future for high-strength esthetic nanozirconia is agglomerate-free sub-5 nm powder. James Glidewell, CDT, CEO and president of Glidewell Laboratories said, "Our continued nanozirconia research efforts, from the fundamental way that zirconia nanocrystals are formed to new sintering methods, will allow us to extend our BruxZir® product life into the next generation of nanocrystalline dental ceramics."

For a closer look at BruxZir Solid Zircoinia, visit www.bruxzir.com

####

About Glidewell Laboratories
Glidewell Laboratories is a privately owned corporation that has more than 40 years of history as a provider of high-quality services and products to dental laboratories nationwide. It has its own 73-person Research and Development team and is the most resourceful dental laboratory in the world. Its newly developed CAD/CAM processing capabilities are recognized as among the most advanced in the industry. To view our large selection of products and services, visit www.glidewelldental.com

For more information, please click here

Copyright © Glidewell Laboratories

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Products

Spectradyne Partners with Particle Technology Labs for Measurement Services December 6th, 2018

Mode-Changing MEMS Accelerometer from STMicroelectronics Combines High Measurement Resolution and Ultra-Low Power for Industrial Applications November 7th, 2018

Fat-Repellent Nanolayers Can Make Oven Cleaning Easier October 17th, 2018

Aculon, Inc. Enters into Strategic Partnership Agreement with Henkel Corporation to Supply Key Mobile Device Manufacturers with NanoProof® PCB Waterproof Technology October 17th, 2018

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Dental

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Innovations in dentistry: Navigational surgery, robotics, and nanotechnology October 2nd, 2020

First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020

Gas storage method could help next-generation clean energy vehicles: Tremendous amounts of hydrogen and methane can be stored in nanoscopic pores April 17th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project