Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Hotspots Tamed by BEAST – Secrets of Mysterious Metal Hotspots Uncovered by New Single Molecule Imaging Technique

Abstract:
The secrets behind the mysterious nano-sized electromagnetic "hotspots" that appear on metal surfaces under a light are finally being revealed with the help of a BEAST.

Hotspots Tamed by BEAST – Secrets of Mysterious Metal Hotspots Uncovered by New Single Molecule Imaging Technique

Berkeley, CA | Posted on January 20th, 2011

Researchers at the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a single molecule imaging technology, dubbed the Brownian Emitter Adsorption Super-resolution Technique (BEAST), that has made it possible for the first time to directly measure the electromagnetic field inside a hotspot. The results hold promise for a number of technologies, including solar energy and chemical sensing.

"With our BEAST method, we were able to map the electromagnetic field profile within a single hotspot as small as 15 nanometers with an accuracy down to 1.2 nanometers, in just a few minutes," says Xiang Zhang, a principal investigator with Berkeley Lab's Materials Sciences Division and the Ernest S. Kuh Endowed Chaired Professor at the University of California (UC), Berkeley. "We discovered that the field is highly localized and, unlike a typical electromagnetic field, does not propagate through space. The field also has an exponential shape that rises steeply to a peak and then decays very fast."

Zhang, who directs the Center for Scalable and Integrated NanoManufacturing (SINAM), a National Science Foundation Nano-scale Science and Engineering Center at UC Berkeley, is the corresponding author of a paper on this research that appears in the journal Nature under the title "Mapping the Distribution of Electromagnetic Field Inside a 15nm Sized Hotspot by Single Molecule Imaging." Co-authoring the paper with Zhang were Hu Cang, Anna Labno, Changgui Lu, Xiaobo Yin, Ming Liu and Christopher Gladden.

Under optical illumination, rough metallic surfaces will become dotted with microscopic hotspots, where the light is strongly confined in areas measuring tens of nanometers in diameter, and the Raman (inelastic) scattering of the light is enhanced by up to 14 orders of magnitude. First observed more than 30 years ago, such hotspots have been linked to the impact of surface roughness on plasmons (electronic surface waves) and other localized electromagnetic modes.

However, during the past three decades, little has been learned about the origins of these hotspots.

"Amazingly, despite thousands of papers on this problem and various theories, we are the first to experimentally determine the nature of the electromagnetic field inside of such a nano-sized hotspots," says Hu Cang, lead author on the Nature paper and a member of Zhang's research group. "The 15 nanometer hotspot we measured is about the size of a protein molecule. We believe there are hotspots that may even be smaller than a molecule."

Because the size of these metallic hotspots is far smaller than the wavelength of incident light, a new technique was needed to map the electromagnetic field within a hotspot. The Berkeley researchers developed the BEAST method to capitalize on the fact that individual fluorescent dye molecules can be localized with single nanometer accuracy. The fluorescence intensity of individual molecules adsorbed on the surface provides a direct measure of the electromagnetic field inside a single hotspot. BEAST utilizes the Brownian motion of single dye molecules in a solution to make the dyes scan the inside of single hotspot stochastically, one molecule at a time.

"The exponential shape we found for the electromagnetic field within a hotspot is direct evidence for the existence of a localized electromagnetic field, as opposed to the more common form of Gaussian distribution," Cang says. "There are several competing mechanisms proposed for hotspots and we are now working to further examine these fundamental mechanisms."

BEAST starts with the submerging of a sample in a solution of freely diffusing fluorescent dye. Since the diffusion of the dye is much faster than the image acquisition time (0.1 milliseconds vs. 50-to-100 milliseconds), the fluorescence produces a homogeneous background. When a dye molecule is adsorbed onto the surface of a hotspot, it appears as a bright spot in images, with the intensity of the spot reporting the local field strength.

"By using a maximum likelihood single molecule localization method, the molecule can be localized with single nanometer accuracy," Zhang says. "After the dye molecule is bleached (typically within hundreds of milliseconds), the fluorescence disappears and the hotspot is ready for the next adsorption event."

Choosing the right concentration of the dye molecules enables the adsorption rate on the surface of a hotspot to be controlled so that only one adsorbed molecule emits photons at a time. Since BEAST uses a camera to record the single molecule adsorption events, multiple hotspots within a field of view of up to one square millimeter can be imaged in parallel.

In their paper, Zhang and his colleagues see hotspots being put to use in a broad range of applications, starting with the making of highly efficient solar cells and devices that can detect weak chemical signals.

"A hotspot is like a lens that can focus light to a small spot with a focusing power well beyond any conventional optics," Cang says. "While a conventional lens can only focus light to a spot about half the wavelength of visible light (about 200-300 nanometers), we now confirm that a hotspot can focus light to a nanometer-sized spot."

Through this exceptional focusing power, hotspots could be used to concentrate sun light on the photocatalytic sites of solar devices, thereby helping to maximize light- harvesting and water-splitting efficiencies. For the detection of weak chemical signals, e.g., from a single molecule, a hotspot could be used to focus incident light so that it only illuminates the molecule of interest, thereby enhancing the signal and minimizing the background.

BEAST also makes it possible to study the behavior of light as it passes through a nanomaterial, a critical factor for the future development of nano-optics and metamaterial devices. Current experimental techniques suffer from limited resolution and are difficult to implement on the truly nanoscale.

"BEAST offers an unprecedented opportunity to measure how a nanomaterial alters the distribution of light, which will guide the development of advanced nano-optics devices," says Cang. "We will also use BEAST to answer some challenging problems in surface science, such as where and what are the active sites in a catalyst, how the energy or charges transfer between molecules and a nanomaterial, and what determine surface hydrophobicity. These problems require a technique with electron-microscopy level resolution and optical spectroscopy information. BEAST is a perfect tool for these problems."

This research was supported by DOE's Office of Science.

For more information about the research of Xiang Zhang visit xlab.me.berkeley.edu/xlabnews.htm

####

About Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory is a U.S. Department of Energy (DOE) national laboratory managed by the University of California for the DOE Office of Science. Berkeley Lab provides solutions to the world’s most urgent scientific challenges including sustainable energy, climate change, human health, and a better understanding of matter and force in the universe. It is a world leader in improving our lives through team science, advanced computing, and innovative technology. Visit our Website at www.lbl.gov

For more information, please click here

Contacts:
Lynn Yarris
(510) 486-5375

Copyright © Lawrence Berkeley National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project