Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Hotspots Tamed by BEAST Secrets of Mysterious Metal Hotspots Uncovered by New Single Molecule Imaging Technique

Abstract:
The secrets behind the mysterious nano-sized electromagnetic "hotspots" that appear on metal surfaces under a light are finally being revealed with the help of a BEAST.

Hotspots Tamed by BEAST Secrets of Mysterious Metal Hotspots Uncovered by New Single Molecule Imaging Technique

Berkeley, CA | Posted on January 20th, 2011

Researchers at the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a single molecule imaging technology, dubbed the Brownian Emitter Adsorption Super-resolution Technique (BEAST), that has made it possible for the first time to directly measure the electromagnetic field inside a hotspot. The results hold promise for a number of technologies, including solar energy and chemical sensing.

"With our BEAST method, we were able to map the electromagnetic field profile within a single hotspot as small as 15 nanometers with an accuracy down to 1.2 nanometers, in just a few minutes," says Xiang Zhang, a principal investigator with Berkeley Lab's Materials Sciences Division and the Ernest S. Kuh Endowed Chaired Professor at the University of California (UC), Berkeley. "We discovered that the field is highly localized and, unlike a typical electromagnetic field, does not propagate through space. The field also has an exponential shape that rises steeply to a peak and then decays very fast."

Zhang, who directs the Center for Scalable and Integrated NanoManufacturing (SINAM), a National Science Foundation Nano-scale Science and Engineering Center at UC Berkeley, is the corresponding author of a paper on this research that appears in the journal Nature under the title "Mapping the Distribution of Electromagnetic Field Inside a 15nm Sized Hotspot by Single Molecule Imaging." Co-authoring the paper with Zhang were Hu Cang, Anna Labno, Changgui Lu, Xiaobo Yin, Ming Liu and Christopher Gladden.

Under optical illumination, rough metallic surfaces will become dotted with microscopic hotspots, where the light is strongly confined in areas measuring tens of nanometers in diameter, and the Raman (inelastic) scattering of the light is enhanced by up to 14 orders of magnitude. First observed more than 30 years ago, such hotspots have been linked to the impact of surface roughness on plasmons (electronic surface waves) and other localized electromagnetic modes.

However, during the past three decades, little has been learned about the origins of these hotspots.

"Amazingly, despite thousands of papers on this problem and various theories, we are the first to experimentally determine the nature of the electromagnetic field inside of such a nano-sized hotspots," says Hu Cang, lead author on the Nature paper and a member of Zhang's research group. "The 15 nanometer hotspot we measured is about the size of a protein molecule. We believe there are hotspots that may even be smaller than a molecule."

Because the size of these metallic hotspots is far smaller than the wavelength of incident light, a new technique was needed to map the electromagnetic field within a hotspot. The Berkeley researchers developed the BEAST method to capitalize on the fact that individual fluorescent dye molecules can be localized with single nanometer accuracy. The fluorescence intensity of individual molecules adsorbed on the surface provides a direct measure of the electromagnetic field inside a single hotspot. BEAST utilizes the Brownian motion of single dye molecules in a solution to make the dyes scan the inside of single hotspot stochastically, one molecule at a time.

"The exponential shape we found for the electromagnetic field within a hotspot is direct evidence for the existence of a localized electromagnetic field, as opposed to the more common form of Gaussian distribution," Cang says. "There are several competing mechanisms proposed for hotspots and we are now working to further examine these fundamental mechanisms."

BEAST starts with the submerging of a sample in a solution of freely diffusing fluorescent dye. Since the diffusion of the dye is much faster than the image acquisition time (0.1 milliseconds vs. 50-to-100 milliseconds), the fluorescence produces a homogeneous background. When a dye molecule is adsorbed onto the surface of a hotspot, it appears as a bright spot in images, with the intensity of the spot reporting the local field strength.

"By using a maximum likelihood single molecule localization method, the molecule can be localized with single nanometer accuracy," Zhang says. "After the dye molecule is bleached (typically within hundreds of milliseconds), the fluorescence disappears and the hotspot is ready for the next adsorption event."

Choosing the right concentration of the dye molecules enables the adsorption rate on the surface of a hotspot to be controlled so that only one adsorbed molecule emits photons at a time. Since BEAST uses a camera to record the single molecule adsorption events, multiple hotspots within a field of view of up to one square millimeter can be imaged in parallel.

In their paper, Zhang and his colleagues see hotspots being put to use in a broad range of applications, starting with the making of highly efficient solar cells and devices that can detect weak chemical signals.

"A hotspot is like a lens that can focus light to a small spot with a focusing power well beyond any conventional optics," Cang says. "While a conventional lens can only focus light to a spot about half the wavelength of visible light (about 200-300 nanometers), we now confirm that a hotspot can focus light to a nanometer-sized spot."

Through this exceptional focusing power, hotspots could be used to concentrate sun light on the photocatalytic sites of solar devices, thereby helping to maximize light- harvesting and water-splitting efficiencies. For the detection of weak chemical signals, e.g., from a single molecule, a hotspot could be used to focus incident light so that it only illuminates the molecule of interest, thereby enhancing the signal and minimizing the background.

BEAST also makes it possible to study the behavior of light as it passes through a nanomaterial, a critical factor for the future development of nano-optics and metamaterial devices. Current experimental techniques suffer from limited resolution and are difficult to implement on the truly nanoscale.

"BEAST offers an unprecedented opportunity to measure how a nanomaterial alters the distribution of light, which will guide the development of advanced nano-optics devices," says Cang. "We will also use BEAST to answer some challenging problems in surface science, such as where and what are the active sites in a catalyst, how the energy or charges transfer between molecules and a nanomaterial, and what determine surface hydrophobicity. These problems require a technique with electron-microscopy level resolution and optical spectroscopy information. BEAST is a perfect tool for these problems."

This research was supported by DOE's Office of Science.

For more information about the research of Xiang Zhang visit xlab.me.berkeley.edu/xlabnews.htm

####

About Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory is a U.S. Department of Energy (DOE) national laboratory managed by the University of California for the DOE Office of Science. Berkeley Lab provides solutions to the worlds most urgent scientific challenges including sustainable energy, climate change, human health, and a better understanding of matter and force in the universe. It is a world leader in improving our lives through team science, advanced computing, and innovative technology. Visit our Website at www.lbl.gov

For more information, please click here

Contacts:
Lynn Yarris
(510) 486-5375

Copyright © Lawrence Berkeley National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

Report highlights opportunities and risks associated with synthetic biology and bioengineering November 22nd, 2017

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Videos/Movies

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Lule University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Graphene enables high-speed electronics on flexible materials: A flexible terahertz detector has been developed by Chalmers using graphene transistors on plastic substrates. It is the first of its kind, and may open for applications requiring flexible electronics such as wireless October 31st, 2017

Govt.-Legislation/Regulation/Funding/Policy

EC Project Aims at Creating and Commercializing Cyber-Physical-System Solutions November 14th, 2017

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3s significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Possible Futures

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

Report highlights opportunities and risks associated with synthetic biology and bioengineering November 22nd, 2017

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Academic/Education

Lule University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Materials/Metamaterials

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Announcements

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

Report highlights opportunities and risks associated with synthetic biology and bioengineering November 22nd, 2017

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Tools

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Nanometrics Announces $50 Million Share Repurchase Program November 15th, 2017

Nanometrics Board of Directors Names Pierre-Yves Lesaicherre President and CEO November 14th, 2017

Oxford Instruments announces winner of the 2017 Sir Martin Wood Prize for Japan November 14th, 2017

Photonics/Optics/Lasers

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Practical superconducting nanowire single photon detector with record detection efficiency over 90 percent November 9th, 2017

Metal-silicone microstructures could enable new flexible optical and electrical devices: Laser-based method creates force-sensitive, flexible microstructures that conduct electricity November 1st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project