Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Five atoms for good contact

Graphical depiction of a copper tip with a carbon molecule (C60) attached to the end. The molecule is hovering over a metal surface on which there are five contacts which have been constructed atom by atom. Image: Schull
Graphical depiction of a copper tip with a carbon molecule (C60) attached to the end. The molecule is hovering over a metal surface on which there are five contacts which have been constructed atom by atom. Image: Schull

Abstract:
A team of scientists headed by Kiel University physicist studies molecules as conductors

Five atoms for good contact

Kiel, Germany | Posted on November 26th, 2010

An international research group under the leadership of Kiel physicist, Richard Berndt, has answered two of the key issues in molecular electronics, namely, how contact to an individual molecule can be created in a controlled manner, and how the type of contact can affect the electronic characteristics. The researchers from Germany, France and Spain published their findings 14 November 2010, in the online advance edition of Nature Nanotechnology.

The physicists constructed a row of contact areas, each consisting of only a few atoms, on a copper surface. They used a pointed copper tip to introduce a single carbon molecule (C60) to every one of these ultra small contacts and determined the electrical resistance of each. "Initially, the connection between the molecule and the surface consisted of just one single atom", explained Dr. Guillaume Schull, who until recently used to carry out research at Kiel University (Christian-Albrechts-Universität zu Kiel (CAU)). "By gradually increasing the number of contact atoms, the electricity conducted through the molecule could be multiplied more than tenfold for the time being." In the case of the C60-molecules, however, this positive trend reached a limit: "As from five contact atoms, the molecule itself starts to act as a bottleneck for the electricity flow", according to Professor Berndt.

While molecular machines exist for almost every technical function imaginable in living nature, the corresponding technology is still in its infancy. Methods have been sought for many years on how to build electrical switches from individual molecules, which could enable electronic components to become even smaller in the future. The research findings should help to better understand the characteristics and processes on the single molecule scale. The knowledge of conductible molecules will be incorporated in the development of electronic components based on organic materials.

Kiel University (CAU) has proven international expertise as a North German research university in the field of Nanoscience. The members of the Collaborative Research Centre 677 "Function by Switching", of which Professor Berndt is also a member, study the field of molecular nanoscience. Furthermore, the CAU is applying for the current round of the Excellence Initiative with the nanoscience cluster of "Materials for Life". Within the framework of the cluster, Kiel scientists wish to research new, intelligent materials for medical therapy.

Original publication:

G. Schull, Th. Frederiksen, A. Arnau, D. Sanchez, R. Berndt: Atomic-scale engineering of electrodes for single-molecule contacts.

Nature Nanotechnology 2010, DOI: 10.1038/NNANO.2010.215

####

For more information, please click here

Contacts:
Prof. Dr. Richard Berndt
Kiel University, Institute of Experimental and Applied Sciences
Tel.: +49(0)431/880-3946 or -2478

Copyright © University of Kiel

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Possible Futures

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Molecular Machines

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Controlling the speed of enzyme motors brings biomedical applications of nanorobots closer: Recent advances in this field have made micro- and nanomotors promising devices for solving many biomedical problems October 13th, 2020

Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings/Nanosheets

Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Nanoelectronics

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project