Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Five atoms for good contact

Graphical depiction of a copper tip with a carbon molecule (C60) attached to the end. The molecule is hovering over a metal surface on which there are five contacts which have been constructed atom by atom. Image: Schull
Graphical depiction of a copper tip with a carbon molecule (C60) attached to the end. The molecule is hovering over a metal surface on which there are five contacts which have been constructed atom by atom. Image: Schull

Abstract:
A team of scientists headed by Kiel University physicist studies molecules as conductors

Five atoms for good contact

Kiel, Germany | Posted on November 26th, 2010

An international research group under the leadership of Kiel physicist, Richard Berndt, has answered two of the key issues in molecular electronics, namely, how contact to an individual molecule can be created in a controlled manner, and how the type of contact can affect the electronic characteristics. The researchers from Germany, France and Spain published their findings 14 November 2010, in the online advance edition of Nature Nanotechnology.

The physicists constructed a row of contact areas, each consisting of only a few atoms, on a copper surface. They used a pointed copper tip to introduce a single carbon molecule (C60) to every one of these ultra small contacts and determined the electrical resistance of each. "Initially, the connection between the molecule and the surface consisted of just one single atom", explained Dr. Guillaume Schull, who until recently used to carry out research at Kiel University (Christian-Albrechts-Universität zu Kiel (CAU)). "By gradually increasing the number of contact atoms, the electricity conducted through the molecule could be multiplied more than tenfold for the time being." In the case of the C60-molecules, however, this positive trend reached a limit: "As from five contact atoms, the molecule itself starts to act as a bottleneck for the electricity flow", according to Professor Berndt.

While molecular machines exist for almost every technical function imaginable in living nature, the corresponding technology is still in its infancy. Methods have been sought for many years on how to build electrical switches from individual molecules, which could enable electronic components to become even smaller in the future. The research findings should help to better understand the characteristics and processes on the single molecule scale. The knowledge of conductible molecules will be incorporated in the development of electronic components based on organic materials.

Kiel University (CAU) has proven international expertise as a North German research university in the field of Nanoscience. The members of the Collaborative Research Centre 677 "Function by Switching", of which Professor Berndt is also a member, study the field of molecular nanoscience. Furthermore, the CAU is applying for the current round of the Excellence Initiative with the nanoscience cluster of "Materials for Life". Within the framework of the cluster, Kiel scientists wish to research new, intelligent materials for medical therapy.

Original publication:

G. Schull, Th. Frederiksen, A. Arnau, D. Sanchez, R. Berndt: Atomic-scale engineering of electrodes for single-molecule contacts.

Nature Nanotechnology 2010, DOI: 10.1038/NNANO.2010.215

####

For more information, please click here

Contacts:
Prof. Dr. Richard Berndt
Kiel University, Institute of Experimental and Applied Sciences
Tel.: +49(0)431/880-3946 or -2478

Copyright © University of Kiel

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Stability of perovskite solar cells reaches next milestone January 27th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

UCF researcher receives Samsung International Global Research Outreach Award: The award from the multinational electronics corporation will fund the development of infrared night vision and thermal sensing camera technology for cell phones and consumer electronics January 27th, 2023

Temperature-sensing building material changes color to save energy January 27th, 2023

Possible Futures

One of the causes of aggressive liver cancer discovered: a 'molecular staple' that helps repair broken: DNA Researchers describe a new DNA repair mechanism that hinders cancer treatment January 27th, 2023

Stability of perovskite solar cells reaches next milestone January 27th, 2023

Danish quantum physicists make nanoscopic advance of colossal significance January 27th, 2023

UC Irvine researchers decipher atomic-scale imperfections in lithium-ion batteries: Team used super high-resolution microscopy enhanced by deep machine learning January 27th, 2023

Academic/Education

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Lifeboat Foundation Guardian Winner Jeff Bezos Donates One Million to Lifeboat Foundation Dream Project Winner Teachers in Space July 30th, 2021

Molecular Machines

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Controlling the speed of enzyme motors brings biomedical applications of nanorobots closer: Recent advances in this field have made micro- and nanomotors promising devices for solving many biomedical problems October 13th, 2020

Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020

Nanotubes/Buckyballs/Fullerenes/Nanorods

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanoelectronics

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Controlled synthesis of crystal flakes paves path for advanced future electronics June 17th, 2022

Announcements

UCF researcher receives Samsung International Global Research Outreach Award: The award from the multinational electronics corporation will fund the development of infrared night vision and thermal sensing camera technology for cell phones and consumer electronics January 27th, 2023

Temperature-sensing building material changes color to save energy January 27th, 2023

Quantum sensors see Weyl photocurrents flow: Boston College-led team develops new quantum sensor technique to image and understand the origin of photocurrent flow in Weyl semimetals January 27th, 2023

Department of Energy announces $9.1 million for research on quantum information science and nuclear physics: Projects span the development of quantum computing, algorithms, simulators, superconducting qubits, and quantum sensors for advancing nuclear physics January 27th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project