Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Five atoms for good contact

Graphical depiction of a copper tip with a carbon molecule (C60) attached to the end. The molecule is hovering over a metal surface on which there are five contacts which have been constructed atom by atom. Image: Schull
Graphical depiction of a copper tip with a carbon molecule (C60) attached to the end. The molecule is hovering over a metal surface on which there are five contacts which have been constructed atom by atom. Image: Schull

Abstract:
A team of scientists headed by Kiel University physicist studies molecules as conductors

Five atoms for good contact

Kiel, Germany | Posted on November 26th, 2010

An international research group under the leadership of Kiel physicist, Richard Berndt, has answered two of the key issues in molecular electronics, namely, how contact to an individual molecule can be created in a controlled manner, and how the type of contact can affect the electronic characteristics. The researchers from Germany, France and Spain published their findings 14 November 2010, in the online advance edition of Nature Nanotechnology.

The physicists constructed a row of contact areas, each consisting of only a few atoms, on a copper surface. They used a pointed copper tip to introduce a single carbon molecule (C60) to every one of these ultra small contacts and determined the electrical resistance of each. "Initially, the connection between the molecule and the surface consisted of just one single atom", explained Dr. Guillaume Schull, who until recently used to carry out research at Kiel University (Christian-Albrechts-Universität zu Kiel (CAU)). "By gradually increasing the number of contact atoms, the electricity conducted through the molecule could be multiplied more than tenfold for the time being." In the case of the C60-molecules, however, this positive trend reached a limit: "As from five contact atoms, the molecule itself starts to act as a bottleneck for the electricity flow", according to Professor Berndt.

While molecular machines exist for almost every technical function imaginable in living nature, the corresponding technology is still in its infancy. Methods have been sought for many years on how to build electrical switches from individual molecules, which could enable electronic components to become even smaller in the future. The research findings should help to better understand the characteristics and processes on the single molecule scale. The knowledge of conductible molecules will be incorporated in the development of electronic components based on organic materials.

Kiel University (CAU) has proven international expertise as a North German research university in the field of Nanoscience. The members of the Collaborative Research Centre 677 "Function by Switching", of which Professor Berndt is also a member, study the field of molecular nanoscience. Furthermore, the CAU is applying for the current round of the Excellence Initiative with the nanoscience cluster of "Materials for Life". Within the framework of the cluster, Kiel scientists wish to research new, intelligent materials for medical therapy.

Original publication:

G. Schull, Th. Frederiksen, A. Arnau, D. Sanchez, R. Berndt: Atomic-scale engineering of electrodes for single-molecule contacts.

Nature Nanotechnology 2010, DOI: 10.1038/NNANO.2010.215

####

For more information, please click here

Contacts:
Prof. Dr. Richard Berndt
Kiel University, Institute of Experimental and Applied Sciences
Tel.: +49(0)431/880-3946 or -2478

Copyright © University of Kiel

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

CiQUS researchers design an artificial nose to detect DNA differentiation with single nucleotide resolution September 18th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Academic/Education

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Malvern technology delivers Malvern reliability in multi-disciplinary lab at Queen Mary University London September 9th, 2014

State University of New York Trustees Unanimously Approve SUNY Polytechnic Institute (SUNY Poly) as New Name for Merged SUNY CNSE / SUNYIT September 9th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Molecular Machines

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

University of Illinois researchers demonstrate novel, tunable nanoantennas July 14th, 2014

Nanotubes/Buckyballs

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Berkeley Lab Licenses Boron Nitride Nanotube Technology: New material has unique mechanical and electronic properties September 13th, 2014

Nanoelectronics

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

Material development on the nanoscale: Doped graphene nanoribbons with potential September 8th, 2014

Announcements

Wear-resistant ceramic powder maximises component lifespan in high-stress applications: Innovnano’s nanostructured 3YSZ offers improved tribological performance for manufacturing components September 18th, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE