Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Five atoms for good contact

Graphical depiction of a copper tip with a carbon molecule (C60) attached to the end. The molecule is hovering over a metal surface on which there are five contacts which have been constructed atom by atom. Image: Schull
Graphical depiction of a copper tip with a carbon molecule (C60) attached to the end. The molecule is hovering over a metal surface on which there are five contacts which have been constructed atom by atom. Image: Schull

Abstract:
A team of scientists headed by Kiel University physicist studies molecules as conductors

Five atoms for good contact

Kiel, Germany | Posted on November 26th, 2010

An international research group under the leadership of Kiel physicist, Richard Berndt, has answered two of the key issues in molecular electronics, namely, how contact to an individual molecule can be created in a controlled manner, and how the type of contact can affect the electronic characteristics. The researchers from Germany, France and Spain published their findings 14 November 2010, in the online advance edition of Nature Nanotechnology.

The physicists constructed a row of contact areas, each consisting of only a few atoms, on a copper surface. They used a pointed copper tip to introduce a single carbon molecule (C60) to every one of these ultra small contacts and determined the electrical resistance of each. "Initially, the connection between the molecule and the surface consisted of just one single atom", explained Dr. Guillaume Schull, who until recently used to carry out research at Kiel University (Christian-Albrechts-Universitšt zu Kiel (CAU)). "By gradually increasing the number of contact atoms, the electricity conducted through the molecule could be multiplied more than tenfold for the time being." In the case of the C60-molecules, however, this positive trend reached a limit: "As from five contact atoms, the molecule itself starts to act as a bottleneck for the electricity flow", according to Professor Berndt.

While molecular machines exist for almost every technical function imaginable in living nature, the corresponding technology is still in its infancy. Methods have been sought for many years on how to build electrical switches from individual molecules, which could enable electronic components to become even smaller in the future. The research findings should help to better understand the characteristics and processes on the single molecule scale. The knowledge of conductible molecules will be incorporated in the development of electronic components based on organic materials.

Kiel University (CAU) has proven international expertise as a North German research university in the field of Nanoscience. The members of the Collaborative Research Centre 677 "Function by Switching", of which Professor Berndt is also a member, study the field of molecular nanoscience. Furthermore, the CAU is applying for the current round of the Excellence Initiative with the nanoscience cluster of "Materials for Life". Within the framework of the cluster, Kiel scientists wish to research new, intelligent materials for medical therapy.

Original publication:

G. Schull, Th. Frederiksen, A. Arnau, D. Sanchez, R. Berndt: Atomic-scale engineering of electrodes for single-molecule contacts.

Nature Nanotechnology 2010, DOI: 10.1038/NNANO.2010.215

####

For more information, please click here

Contacts:
Prof. Dr. Richard Berndt
Kiel University, Institute of Experimental and Applied Sciences
Tel.: +49(0)431/880-3946 or -2478

Copyright © University of Kiel

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Possible Futures

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Academic/Education

LuleŚ University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Molecular Machines

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Going swimmingly: Biotemplates breakthrough paves way for cheaper nanobots: By using bacterial flagella as a template for silica, researchers have demonstrated an easier way to make propulsion systems for nanoscale swimming robots November 30th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

First 3-D observation of nanomachines working inside cells: Researchers headed by IRB Barcelona combine genetic engineering, super-resolution microscopy and biocomputation to allow them to see in 3-D the protein machinery inside living cells January 27th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Touchy nanotubes work better when clean: Rice, Swansea scientists show that decontaminating nanotubes can simplify nanoscale devices January 4th, 2018

Paving the way for a non-electric battery to store solar energy: UMass Amherst scientists say a polymer chain organized like a string of Christmas lights assists energy storage December 22nd, 2017

Nanotubes go with the flow to penetrate brain tissue: Rice University scientists, engineers develop microfluidic devices, microelectrodes for gentle implantation December 19th, 2017

Nanoelectronics

Viewing atomic structures of dopant atoms in 3-D relating to electrical activity in a semiconductor December 28th, 2017

Electronically-smooth '3-D graphene': A bright future for trisodium bismuthide: Electronically-smooth nature of trisodium bismuthide makes it a viable alternative to graphene/h-BN December 22nd, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

GLOBALFOUNDRIES, Fudan Team to Deliver Next Generation Dual Interface Smart Card November 14th, 2017

Announcements

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project