Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoscale probe reveals interactions between surfaces and single molecules

Simultaneously acquired images and polarizability maps of four different families of molecules
Simultaneously acquired images and polarizability maps of four different families of molecules

Abstract:
New experimental test of buried contacts paves the way for molecular devices

By Mike Rodewald

Nanoscale probe reveals interactions between surfaces and single molecules

Los Angeles, CA | Posted on November 20th, 2010

As electronics become smaller and smaller the need to understand nanoscale phenomena becomes greater and greater. Because materials exhibit different properties at the nanoscale than they do at larger scales, new techniques are required to understand and to exploit these new phenomena. A team of researchers led by Paul Weiss, UCLA's Fred Kavli Chair in NanoSystems Sciences, has developed a tool to study nanoscale interactions. Their device is a dual scanning tunneling and microwave-frequency probe that is capable of measuring the interactions between single molecules and the surfaces to which the molecules are attached.

"Our probe can generate data on the physical, chemical, and electronic interactions between single molecules and substrates, the contacts to which they are attached. Just as in semiconductor devices, contacts are critical here," remarked Weiss, who directs UCLA's California NanoSystems Institute and is also a distinguished professor of chemistry and biochemistry & materials science and engineering.

The team, which also includes theoretical chemist Mark Ratner from Northwestern University and synthetic chemist James Tour from Rice University, published their findings in the peer-reviewed journal ACS Nano.

For the past 50 years, the electronics industry has endeavored to keep up with Moore's Law, the prediction made by Gordon E. Moore in 1965 that the size of transistors in integrated circuits would halve approximately every two years. The pattern of consistent decrease in the size of electronics is approaching the point where transistors will have to be constructed at the nanoscale to keep pace. However, researchers have encountered obstacles in creating devices at the nanoscale because of the difficulty of observing phenomena at such minute sizes.

The connections between components are a vital element of nanoscale electronics. In the case of molecular devices, polarizability measures the extent to which electrons of the contact interact with those of the single molecule. Two key aspects of polarizability measurements are the ability to do the measurement on a surface with subnanometer resolution, and the ability to understand and to control molecular switches in both the on and off states.

To measure the polarizability of single molecules the research team developed a probe capable of simultaneous scanning tunneling microscopy (STM) measurements and microwave difference frequency (MDF) measurements. With the MDF capabilities of the probe, the team was able to locate single molecule switches on substrates, even when the switches were in the off state, a key capability lacking in previous techniques. Once the team located the switches, they could use the STM to change the state to on or off and to measure the interactions in each state between the single molecule switches and the substrate.

The new information provided by the team's probe focuses on what the limits of electronics will be, rather than targeting devices for production. Also, because the probe is capable of a wide variety of measurements including physical, chemical and electronic it could enable researchers to identify submolecular structures in complex biomolecules and assemblies.

####

About California NanoSystems Institute at UCLA
The California NanoSystems Institute at UCLA is an integrated research facility located at UCLA and UC Santa Barbara. Its mission is to foster interdisciplinary collaborations in nanoscience and nanotechnology; to train a new generation of scientists, educators and technology leaders; to generate partnerships with industry; and to contribute to the economic development and the social well-being of California, the United States and the world. The CNSI was established in 2000 with $100 million from the state of California. An additional $850 million of support has come from federal research grants and industry funding. CNSI members are drawn from UCLA's College of Letters and Science, the David Geffen School of Medicine, the School of Dentistry, the School of Public Health, and the Henry Samueli School of Engineering and Applied Science. They are engaged in measuring, modifying and manipulating atoms and molecules the building blocks of our world. Their work is carried out in an integrated laboratory environment. This dynamic research setting has enhanced understanding of phenomena at the nanoscale and promises to produce important discoveries in health, energy, the environment and information technology.

For more information, please click here

Contacts:
Media Contacts
Jennifer Marcus
310-267-4839


Mike Rodewald
310-267-5883

Copyright © California NanoSystems Institute at UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Leti Presents Advances in Propagation Modeling and Antenna Design for mmWave Spectrum: Paper Is One of 15 that Leti Presented at European Conference on Antennas and Propagation March 19-24 March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Possible Futures

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Academic/Education

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Molecular Machines

First 3-D observation of nanomachines working inside cells: Researchers headed by IRB Barcelona combine genetic engineering, super-resolution microscopy and biocomputation to allow them to see in 3-D the protein machinery inside living cells January 27th, 2017

Micro-bubbles make big impact: Research team develops new ultrasound-powered actuator to develop micro robot November 25th, 2016

Scientists come up with light-driven motors to power nanorobots of the future: Researchers from Russia and Ukraine propose a nanosized motor controlled by a laser with potential applications across the natural sciences and medicine November 11th, 2016

HKU chemists develop world's first light-seeking synthetic Nanorobot November 9th, 2016

Nanoelectronics

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

A SOI wafer is a suitable substrate for gallium nitride crystals: Improved characteristics in power electronics and radio applications can be achieved by using a SOI wafer for gallium nitride growth March 4th, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Announcements

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Tools

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

CRMGroup in Belgium uses a Deben three point bending stage in the development of new steel & coated steel products for automotive and other industrial applications March 21st, 2017

Next-gen steel under the microscope March 18th, 2017

Novel nozzle saves crystals: Double flow concept widens spectrum for protein crystallography March 17th, 2017

Research partnerships

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project