Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Global Market For Transparent Electronics To Be Worth $123 Billion In 2015

Abstract:
According to a new technical market research report, TRANSPARENT ELECTRONICS: TECHNOLOGIES AND GLOBAL MARKETS (IFT065A) from BCC Research (www.bccresearch.com), the value of the global transparent electronics industry was nearly $76.4 billion in 2010, but is expected to increase to $123 billion in 2015, for a 5-year compound annual growth rate (CAGR) of 10%.

Global Market For Transparent Electronics To Be Worth $123 Billion In 2015

Wellesley, MA | Posted on October 21st, 2010

The largest segment of the market, inorganic material, is projected to increase at a CAGR of 6.7% to nearly $103 billion in 2015, after being valued at $74.2 billion in 2010.

The other segment, organic material, is estimated at $2.1 billion in 2010, but is expected to increase at a CAGR of 56.9% to reach nearly $20.3 billion in 2015.

Most of the hype surrounding transparent electronics is fueled by the exotic usage scenarios that it will engender: The idea of having electronic circuitry that is invisible to the human eye has few parallels in its appeal. There is an overwhelming popular discourse that this technology is being developed from scratch, when the reality is more mundane and humbling. Transparent electronics has been with us for at least 50 years.

The core of transparent electronics, the transparent conductor, is neither a recent discovery nor is it unexplored vis-ŗ-vis applications. Transparent conducting oxides (TCO), in general, and indium tin oxide (ITO), in particular, have a long history of usage in consumer electronics as well as optical devices. They have been used for low-profile applications such as cathode-ray tubes, electromagnetic shielding and other applications. The demand for these requirements was steady but limited and there were seemingly no supply-side constraints.

This report divides the materials used for constructing transparent electronics components into the following categories: Inorganic material - Indium tin oxide and other inorganic material; and Organic material - Conducting polymers and carbon nanotubes (CNTs).

While an in-depth comparison of the pros and cons of organic and inorganic material is presented in the body of the report, there are two broad advantages that organic materials bring to the table: Better flexibility and malleability, and cost-effectiveness in the long run due to substantial supply side stability.

Transparent electronics is not a uniform science. It is rather a collection of several usage patterns and innovations that have often developed independently of each other. The technology and the market are clearly evolving at large; even among themselves, there are different stages of evolution. Transparent electronics has evolved around a set of usage scenarios: Solar/photovoltaic (PV) cells, touch surfaces, mainstream displays, and unconventional substrates.

####

For more information, please click here

Contacts:
BCC Research
35 Walnut Street, Suite 100
Wellesley, MA
Telephone: 866-285-7215

Steven Cumming
Tel: 866-285-7215
Fax: 781-489-7308

Copyright © BCC Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass? December 18th, 2014

Silicon Valley-Based Foresight Valuation Launches STR-IPô, a New Initiative for Startups to Discover the Value of Their Intellectual Property December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Chip Technology

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Stanford team combines logic, memory to build a 'high-rise' chip: Today circuit cards are laid out like single-story towns; Futuristic architecture builds layers of logic and memory into skyscraper chips that would be smaller, faster, cheaper -- and taller December 15th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Nanotubes/Buckyballs

A sponge-like molecular cage for purification of fullerenes December 15th, 2014

'Trojan horse' proteins used to target hard-to-reach cancers: Scientists at Brunel University London have found a way of targeting hard-to-reach cancers and degenerative diseases using nanoparticles, but without causing the damaging side effects the treatment normally brings December 11th, 2014

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Green meets nano: Scientists at TU Darmstadt create multifunctional nanotubes using nontoxic materials December 3rd, 2014

Nanoelectronics

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Announcements

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass? December 18th, 2014

Silicon Valley-Based Foresight Valuation Launches STR-IPô, a New Initiative for Startups to Discover the Value of Their Intellectual Property December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass? December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE