Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Global Market For Transparent Electronics To Be Worth $123 Billion In 2015

Abstract:
According to a new technical market research report, TRANSPARENT ELECTRONICS: TECHNOLOGIES AND GLOBAL MARKETS (IFT065A) from BCC Research (www.bccresearch.com), the value of the global transparent electronics industry was nearly $76.4 billion in 2010, but is expected to increase to $123 billion in 2015, for a 5-year compound annual growth rate (CAGR) of 10%.

Global Market For Transparent Electronics To Be Worth $123 Billion In 2015

Wellesley, MA | Posted on October 21st, 2010

The largest segment of the market, inorganic material, is projected to increase at a CAGR of 6.7% to nearly $103 billion in 2015, after being valued at $74.2 billion in 2010.

The other segment, organic material, is estimated at $2.1 billion in 2010, but is expected to increase at a CAGR of 56.9% to reach nearly $20.3 billion in 2015.

Most of the hype surrounding transparent electronics is fueled by the exotic usage scenarios that it will engender: The idea of having electronic circuitry that is invisible to the human eye has few parallels in its appeal. There is an overwhelming popular discourse that this technology is being developed from scratch, when the reality is more mundane and humbling. Transparent electronics has been with us for at least 50 years.

The core of transparent electronics, the transparent conductor, is neither a recent discovery nor is it unexplored vis--vis applications. Transparent conducting oxides (TCO), in general, and indium tin oxide (ITO), in particular, have a long history of usage in consumer electronics as well as optical devices. They have been used for low-profile applications such as cathode-ray tubes, electromagnetic shielding and other applications. The demand for these requirements was steady but limited and there were seemingly no supply-side constraints.

This report divides the materials used for constructing transparent electronics components into the following categories: Inorganic material - Indium tin oxide and other inorganic material; and Organic material - Conducting polymers and carbon nanotubes (CNTs).

While an in-depth comparison of the pros and cons of organic and inorganic material is presented in the body of the report, there are two broad advantages that organic materials bring to the table: Better flexibility and malleability, and cost-effectiveness in the long run due to substantial supply side stability.

Transparent electronics is not a uniform science. It is rather a collection of several usage patterns and innovations that have often developed independently of each other. The technology and the market are clearly evolving at large; even among themselves, there are different stages of evolution. Transparent electronics has evolved around a set of usage scenarios: Solar/photovoltaic (PV) cells, touch surfaces, mainstream displays, and unconventional substrates.

####

For more information, please click here

Contacts:
BCC Research
35 Walnut Street, Suite 100
Wellesley, MA
Telephone: 866-285-7215

Steven Cumming
Tel: 866-285-7215
Fax: 781-489-7308

Copyright © BCC Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Chip Technology

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Nanotubes/Buckyballs/Fullerenes

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Cotton fibres instead of carbon nanotubes May 9th, 2015

Nanoelectronics

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Random nanowire configurations increase conductivity over heavily ordered configurations May 16th, 2015

Announcements

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project