Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Global Market For Transparent Electronics To Be Worth $123 Billion In 2015

Abstract:
According to a new technical market research report, TRANSPARENT ELECTRONICS: TECHNOLOGIES AND GLOBAL MARKETS (IFT065A) from BCC Research (www.bccresearch.com), the value of the global transparent electronics industry was nearly $76.4 billion in 2010, but is expected to increase to $123 billion in 2015, for a 5-year compound annual growth rate (CAGR) of 10%.

Global Market For Transparent Electronics To Be Worth $123 Billion In 2015

Wellesley, MA | Posted on October 21st, 2010

The largest segment of the market, inorganic material, is projected to increase at a CAGR of 6.7% to nearly $103 billion in 2015, after being valued at $74.2 billion in 2010.

The other segment, organic material, is estimated at $2.1 billion in 2010, but is expected to increase at a CAGR of 56.9% to reach nearly $20.3 billion in 2015.

Most of the hype surrounding transparent electronics is fueled by the exotic usage scenarios that it will engender: The idea of having electronic circuitry that is invisible to the human eye has few parallels in its appeal. There is an overwhelming popular discourse that this technology is being developed from scratch, when the reality is more mundane and humbling. Transparent electronics has been with us for at least 50 years.

The core of transparent electronics, the transparent conductor, is neither a recent discovery nor is it unexplored vis-à-vis applications. Transparent conducting oxides (TCO), in general, and indium tin oxide (ITO), in particular, have a long history of usage in consumer electronics as well as optical devices. They have been used for low-profile applications such as cathode-ray tubes, electromagnetic shielding and other applications. The demand for these requirements was steady but limited and there were seemingly no supply-side constraints.

This report divides the materials used for constructing transparent electronics components into the following categories: Inorganic material - Indium tin oxide and other inorganic material; and Organic material - Conducting polymers and carbon nanotubes (CNTs).

While an in-depth comparison of the pros and cons of organic and inorganic material is presented in the body of the report, there are two broad advantages that organic materials bring to the table: Better flexibility and malleability, and cost-effectiveness in the long run due to substantial supply side stability.

Transparent electronics is not a uniform science. It is rather a collection of several usage patterns and innovations that have often developed independently of each other. The technology and the market are clearly evolving at large; even among themselves, there are different stages of evolution. Transparent electronics has evolved around a set of usage scenarios: Solar/photovoltaic (PV) cells, touch surfaces, mainstream displays, and unconventional substrates.

####

For more information, please click here

Contacts:
BCC Research
35 Walnut Street, Suite 100
Wellesley, MA
Telephone: 866-285-7215

Steven Cumming
Tel: 866-285-7215
Fax: 781-489-7308

Copyright © BCC Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Aerotech X-Y ball-screw stage for economical high performance Planar positioning April 16th, 2014

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

Malvern reports on the publication of the 1000th peer-reviewed paper to cite NanoSight’s Nanoparticle Tracking Analysis, NTA April 16th, 2014

Chip Technology

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

Obducat has launched a new generation of SINDRE® Nano Imprint production system April 11th, 2014

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Clean Shot at Manufacturing Course…For Less April 9th, 2014

Nanotubes/Buckyballs

Effects of Carbon Nanotubes Studied on Pregnant Mothers April 12th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Scientists Succeed in Simultaneous Determination of Acetaminophen, Codeine in Drug Samples April 9th, 2014

Rebar technique strengthens case for graphene: Rice University lab makes hybrid nanotube-graphene material that promises to simplify manufacturing April 7th, 2014

Nanoelectronics

Better solar cells, better LED light and vast optical possibilities April 12th, 2014

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Preview of Hands-on Nanotechnology Demos at ‘Chemistry of Wine’ Fundraiser to Show Nanotech Magic April 8th, 2014

Announcements

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Aerotech X-Y ball-screw stage for economical high performance Planar positioning April 16th, 2014

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

Malvern reports on the publication of the 1000th peer-reviewed paper to cite NanoSight’s Nanoparticle Tracking Analysis, NTA April 16th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Malvern reports on the publication of the 1000th peer-reviewed paper to cite NanoSight’s Nanoparticle Tracking Analysis, NTA April 16th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE