Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > New $46-million labs to enable research at frontiers of mechanical engineering and nanotechnology

Abstract:
A next-generation nano-mechanical engineering lab complex at the University of Michigan will enable researchers to study the forces at work at the smallest scales and to advance nano-technologies in energy, manufacturing, healthcare and biotechnology.

New $46-million labs to enable research at frontiers of mechanical engineering and nanotechnology

Ann Arbor, MI | Posted on September 29th, 2010

The Center of Excellence in Nano Mechanical Science and Engineering is a $46 million facility made possible in part by a $9.5 million grant from the National Institute of Standards and Technology, announced today. The three-story complex will include 60 lab modules and space for 18 professors in a 62,880 square-foot addition to the G.G. Brown Laboratories on Hayward Street on North Campus.

"Michigan Engineering has always been strong in traditional large-scale mechanical engineering areas including automotive research. This new facility will propel us to the next level. It will allow researchers to pursue exciting projects at the frontiers of mechanical science and engineering, where the discipline intersects with nanoscience and biology," said David Munson, the Robert J. Vlasic Dean of Engineering.

"We would like to thank our federal lawmakers U.S. Rep. John Dingell, U.S. Sen. Carl Levin and U.S. Sen. Debbie Stabenow as well as Gov. Jennifer Granholm for their support throughout this process," he said.

This center will complement the College of Engineering's Lurie Nanofabrication Facility, a state-of-the art lab where researchers focus on building devices at the nanoscale. In the new complex, researchers will develop the tools to measure, image, study and test nanoscale phenomena and devices.

"The award is great news for the University of Michigan and the state of Michigan," said Governor Jennifer Granholm. "This new facility will help train the next generation of engineers in our state, and produce the cutting-edge research and development in energy, health care and manufacturing that will continue to diversify our economy and create jobs."

The center will be designed with a tightly controlled experimental environment. Existing labs in mechanical engineering, designed for macroscale research, don't have the right temperature, dust, vibration and noise controls for researchers to take accurate nanoscale measurements, said Jack Hu, associate dean for academic affairs in engineering. Hu is a professor of Mechanical Engineering and the G. Lawton and Louise G. Johnson Professor of Engineering. He led the proposal effort to NIST.

"Our current setting is full of water pumps and various machine tools, which are not appropriate for the new research we are pursuing," Hu said.

"Nanotechnology is full of promise," Hu said. "It has applications in manufacturing, in medicine and in solar and thermal energy conversion, to name just a few fields. Fundamental to all these areas is a good understanding of the mechanical behavior of nanoparticles and we don't yet have that. Through this facility, we are providing an enabling platform for this research and innovation."

Work in the lab will be divided into four thrusts: nano-measurement, single biomolecule analysis, nanoscale energy conversion and nanomanufacturing, and nano- and microelectromechanical systems for medical research and diagnostics. Some of the projects will take place in the labs are:

• Measuring the twisting forces at work in a DNA molecule, which could help researchers understand how these blueprints of life copy and repair themselves.

• Testing new techniques that map strain, temperature and forces in materials in order to understand one of the most vexing phenomena in engineering: why and how does a material's strength depend on its microscopic structure. Traditional laws cannot predict the strength of devices at the smallest scales. This research could bring about lighter materials that could improve fuel economy.

• Understanding how biological molecules interact and reproduce, how they transport molecular cargoes, and how they convert chemical signals into mechanical work. New knowledge of these processes could aid in the development of better drug delivery and treatments for cancer and neurodegenerative diseases.

• Building a microelectromechanical biochip that can affordably count thousands of single T-cells for HIV/AIDS monitoring in resource-limited settings.

• Figuring out why carbon nanotubes are so strong and conductive. They are stronger and stiffer than steel. They conduct electricity better than copper, and conduct heat better than diamonds. But to integrate them into larger devices, engineers must be able to understand and predict these properties.

Construction is expected to start in spring 2011 and finish in May 2013. In addition to the NIST funding, this project is supported by $15 million from the University of Michigan, $6.5 million from the College of Engineering, and $15 million in private commitments.

####

About University of Michigan
Michigan Engineering:
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At $180 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility.

For more information, please click here

Contacts:
Nicole Casal Moore
(734) 647-7087

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

Ageing can drive progress: Population ageing is likely to boost medicine, nanotechnology and robotics, but increase political risks July 27th, 2016

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Academic/Education

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

News from Quorum: The College of New Jersey use the Quorum Cryo-SEM preparation system in a project to study ice crystals in high altitude clouds July 19th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

SUNY Poly Celebrates Its 10th Year Exhibiting at SEMICON West with Cutting Edge Developments in Integrated Photonics and Power Electronics July 8th, 2016

Nanotubes/Buckyballs/Fullerenes

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Sensing trouble: A new way to detect hidden damage in bridges, roads: University of Delaware engineers devise new method for monitoring structural health July 8th, 2016

Wireless, wearable toxic-gas detector: Inexpensive sensors could be worn by soldiers to detect hazardous chemical agents July 4th, 2016

Nanotubes' 'stuffing' as is: A scientist from the Lomonosov Moscow State University studied the types of carbon nanotubes' 'stuffing' June 2nd, 2016

Nanomedicine

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

Nanoelectronics

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Announcements

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

Ageing can drive progress: Population ageing is likely to boost medicine, nanotechnology and robotics, but increase political risks July 27th, 2016

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

Energy

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic