Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Innovation could bring super-accurate sensors, crime forensics

Abstract:
A new technology enabling tiny machines called micro electromechanical systems to "self-calibrate" could make possible super-accurate and precise sensors for crime-scene forensics, environmental testing and medical diagnostics.

By Emil Venere

Innovation could bring super-accurate sensors, crime forensics

West Lafayette, IN | Posted on August 10th, 2010

The innovation might enable researchers to create a "nose-on-a-chip" for tracking criminal suspects, sensors for identifying hazardous solid or gaseous substances, as well as a new class of laboratory tools for specialists working in nanotechnology and biotechnology.

"In the everyday macroscopic world, we can accurately measure distance and mass because we have well-known standards such as rulers or weights that we use to calibrate devices that measure distances or forces," said Jason Vaughn Clark, an assistant professor of electrical and computer engineering and mechanical engineering. "But for the micro- or nanoscopic worlds, there have been no standards and no practical ways for measuring very small distances or forces."

The micro electromechanical systems, or MEMS, are promising for an array of high-tech applications.

Researchers previously have used various techniques to gauge the force and movement of tiny objects containing components so small they have to be measured on the scale of micrometers or nanometers, millionths or billionths of a meter, respectively. However, the accuracy of conventional techniques is typically off by 10 percent or more because of their inherent uncertainties, Clark said.

"And due to process variations within fabrication, no two microstructures have the same geometric and material properties," he said.

These small variations in microstructure geometry, stiffness and mass can significantly affect performance.

"A 10 percent change in width can cause a 100 percent change in a microstructure's stiffness," Clark said. "Process variations have made it difficult for researchers to accurately predict the performance of MEMS."

The new technology created by Clark, called electro micro metrology - or EMM - is enabling engineers to account for process variations by determining the precise movement and force that's being applied to, or sensed by, a MEMS device.

"For the first time, MEMS can now truly self-calibrate without any external references," Clark said. "That is, our MEMS are able to determine their unique mechanical performance properties. And in doing so, they become very accurate sensors or actuators."

Research findings were detailed in two papers presented in June during a meeting of the Society of Experimental Mechanics in Indianapolis and at the Nanotech 2010 Conference and Expo in Anaheim, Calif. The work is based at the Birck Nanotechnology Center in Purdue's Discovery Park.

MEMS accelerometers and gyroscopes currently are being used in commercial products, including the Nintendo Wii video game, the iPhone, walking robots and automotive airbags.

"Those MEMS work well because they don't need ultra-high precision or accuracy," Clark said. "It is difficult for conventional technology to accurately measure very small forces, such as van der Waals forces between molecules or a phenomenon called the Casimir effect that is due to particles popping in and out of existence everywhere in the universe."

These forces are measured in "piconewtons," a trillionth of the weight of a medium-size apple.

"If we are trying to investigate or exploit picoscale phenomena like Casimir forces, van der Waals forces, the hydrogen bond forces in DNA, high-density data storage or even nanoassembly, we need much higher precision and accuracy than conventional methods provide," Clark said. "With conventional tools, we know we are sensing something, but without accurate measurements it is difficult to fully understand the phenomena, repeat the experiments and create predictive models."

Self-calibration also is needed because microdevices might be exposed to harsh environments or remain dormant for long periods.

"Say you have a MEMS sensor in the environment or on a space probe," Clark said. "You want it to be able to wake up and recalibrate itself to account for changes resulting from temperature differences, changes in the gas or liquid ambient, or other conditions that might affect its properties. That's when self-calibration technology is needed."

EMM defines mechanical properties solely in terms of electrical measurements, which is different than conventional methods, he said.

For example, by measuring changes in an electronic property called capacitance, or the storage of electrical charge, Clark is able to obtain the microstructure's shape, stiffness, force or displacement with high accuracy and precision, he said.

"We can measure capacitance more precisely than we can measure any other quantity to date," he said. "That means we could potentially measure certain mechanical phenomena more precisely by using MEMS than we could by using conventional macroscale measurement tools."

The researcher will use the new approach to improve the accuracy of instruments called atomic force microscopes, which are used by nanotechnologists.

"The atomic force microscope, which jumpstarted the nanotechnology revolution, is often used to investigate small displacements and forces," Clark said. "But the operator of the tool cannot precisely say what distance or force is being sensed beyond one or two significant digits. And the typical operator knows even less about the true accuracy of their measurements."

Purdue operates about 30 atomic force microscopes, and Clark's research group is planning to teach users how to calibrate their instruments using the self-calibrating MEMS.

He also plans to use his new approach to create a miniature self-calibrating "AFM-on-a-chip," dramatically shrinking the size and cost of the laboratory instrument.

"Such an advent should open the door to the nanoworld to a much larger number of groups or individuals," he said.

Clark's research group has fabricated and tested the first generation of self-calibrating MEMS, and repeatable results have shown the presence of the Casimir and van der Waals forces.

The research is funded by the National Science Foundation.

####

For more information, please click here

Contacts:
Writer:
Emil Venere
(765) 494-4709


Source:
Jason Vaughn Clark
(765) 494-3437


Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

A dash of gold improves microlasers: The precious metal provides a 'nano' solution for improving disease detection, defense and cybersecurity applications October 9th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Leti and Partners in PiezoMAT Project Develop New Fingerprint Technology for Highly Reliable Security and ID Applications: Ultra-high Resolution Pressure Sensing Uses Matrices of Vertical Piezoelectric Nanowire To Reconstruct the Smallest Features of Human Fingerprints September 5th, 2017

Leti Announces Backside Shield that Protects Microchips from Physical Attacks March 8th, 2017

NEMS

Leti Scientists Participating in Sessions on Med Tech, Automotive Technologies, MEMS, Si-photonics and Lithography at SEMICON Europa: Teams also Will Demonstrate Technology Advances in Telecom, Data Fusion, Energy, Silicon Photonics and 3D Integration October 18th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Nano-photonics meets nano-mechanics: Controlling on-chip nano-optics by graphene nano-opto-mechanics January 22nd, 2016

Mechanical quanta see the light January 20th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

Possible Futures

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

MEMS

First Capacitive Transducer with 13nm Gap July 27th, 2017

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Nanomedicine

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

Nonviral CRISPR Delivery a Success October 2nd, 2017

Sensors

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Single ‘solitons’ promising for optical technologies October 9th, 2017

Two dimensional materials: Advanced molybdenum selenide near infrared phototransistors September 27th, 2017

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Announcements

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Homeland Security

A dash of gold improves microlasers: The precious metal provides a 'nano' solution for improving disease detection, defense and cybersecurity applications October 9th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

Nanobionic spinach plants can detect explosives: After sensing dangerous chemicals, the carbon-nanotube-enhanced plants send an alert November 2nd, 2016

Environment

Single ‘solitons’ promising for optical technologies October 9th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

High-tech electronics made from autumn leaves: New process converts biomass waste into useful electronic devices August 30th, 2017

Nanoparticles pollution rises 30 percent when flex-fuel cars switch from bio to fossil: Study carried out in São Paulo, home to the world's largest flex fuel urban fleet, shows increase of ultrafine particulate matter when ethanol prices rose and consumption fell August 28th, 2017

Nanobiotechnology

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

Nonviral CRISPR Delivery a Success October 2nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project