Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Pushing droplets around

A symmetrical droplet (top) forms on a surface with straight nano-pillars, while on a surface with bent pillars (bottom) the droplet is asymmetrical, extending out only to the right. Inset images are micrographs of the surface structure.  Images: Kuang-Han Chu, Rong Xiao and Evelyn N. Wang
A symmetrical droplet (top) forms on a surface with straight nano-pillars, while on a surface with bent pillars (bottom) the droplet is asymmetrical, extending out only to the right. Inset images are micrographs of the surface structure. Images: Kuang-Han Chu, Rong Xiao and Evelyn N. Wang

Abstract:
MIT researchers find a way to make drops on a surface move in just one direction, with possible applications ranging from biology to electronics

By David L. Chandler, MIT News Office

Pushing droplets around

Cambridge, MA | Posted on March 29th, 2010

Controlling the way liquids spread across a surface is important for a wide variety of technologies, including DNA microarrays for medical research, inkjet printers and digital lab-on-a-chip systems. But until now, the designers of such devices could only control how much the liquid would spread out over a surface, not which way it would go.

New research from mechanical engineers at MIT has revealed a new approach that, by creating specific kinds of tiny structures on a material's surface, can make a droplet spread only in a single direction.

A report on the new work, by Esther and Harold E. Edgerton Assistant Professor of Mechanical Engineering Evelyn N. Wang and graduate students Kuang-Han Chu and Rong Xiao, was published on March 28 in the journal Nature Materials.

The system Wang and her team developed is completely passive, based on producing a textured surface with tiny pillars shaped in specific ways to propel liquid in one direction and restrict its movement in others. Once the surface is prepared, no mechanical or electrical controls are needed to propel the liquid in the desired direction, and a droplet placed at any point on the surface will always spread the same way.

It's just the shapes on the surface that control how the drops spread, rather than the particular materials used, Wang says. The chips used for testing were made by etching a silicon wafer surface to produce a grid of tiny pillars, which then were selectively coated with gold on one side to make the pillars bend in one direction. To prove that the effect was caused just by the bent shapes rather than some chemical process involving the silicon and gold, the researchers, with the help of Professor Karen Gleason's group in the Department of Chemical Engineering, then coated the surface with a thin layer of a polymer so that the water would only come in contact with a single type of material. The pillars are all curved in one direction, and cause the liquid to move in that direction.

"Nobody had really studied this kind of geometry, because it's hard to fabricate," Wang says.

Wang explains that while this work is still early-stage basic research, in principle such systems could be used for a wide variety of applications. For example, it could provide new ways to manipulate biological molecules on the surface of a chip, for various testing and measurement systems. It might be used in desalination systems to help direct water that condenses on a surface toward a collection system. Or it might allow more precise control of cooling liquids on a microchip, directing the coolant toward specific hotspots rather than letting them spread out over the whole surface.

"It's a big deal to be able to cool local hotspots on a chip," Wang says, especially as the components on a chip continue to get smaller and thermal management becomes ever more critical. The research was funded in part by the National Science Foundation, DARPA, and Northrup Grumman.

Mark Shannon, professor of mechanical science and engineering at the University of Illinois, Urbana-Champaign, agrees that this method might be further developed for a variety of applications, including biomedical lab-on-a-chip systems for the detection of specific biomolecules in blood, for example. "Droplet manipulation has been heavily developed for moving samples from station to station for different analysis steps," he says, and this new method might provide a useful way to do that with minimal energy requirements, but to do so will require the ability to create multiple regions on a surface that propel the liquid in different directions for each stage. "This research will help enable these unit operations," he says, in combination with related research currently being carried out in other places.

Howard Stone, professor of mechanical and aerospace engineering at Princeton University, who was not involved in this research, says researchers have taken several approaches to surface patterning and control in recent years, some inspired by nature and some by materials applications. "This research advance for one-dimensional asymmetric spreading is a nice addition to the toolbox for surface patterning to control liquid spreading," he says.

####

About Massachusetts Institute of Technology
The mission of MIT is to advance knowledge and educate students in science, technology and other areas of scholarship that will best serve the nation and the world in the 21st century — whether the focus is cancer, energy, economics or literature.

For more information, please click here

Contacts:
Tel 617.253.2700

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Videos/Movies

Like a hall of mirrors, nanostructures trap photons inside ultrathin solar cells April 22nd, 2014

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

Director Wally Pfister joins UC Berkeley neuroengineers to discuss the science behind ‘Transcendence’ April 7th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Cloaked DNA nanodevices survive pilot mission: Successful foray opens door to virus-like DNA nanodevices that could diagnose diseased tissues and manufacture drugs to treat them April 22nd, 2014

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

Progress made in developing nanoscale electronics: New research directs charges through single molecules April 21st, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Possible Futures

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

The "Tipping Point" February 12th, 2014

Academic/Education

Global leader in solar cell manufacturing eyes New York for major expansion outside of Japan: CNSE and Solar Frontier Explore $700 Million Investment, Job Creation in New York State April 22nd, 2014

University of Waterloo Visits China to Strengthen Bonds With Research Partners April 21st, 2014

Director Wally Pfister joins UC Berkeley neuroengineers to discuss the science behind ‘Transcendence’ April 7th, 2014

First annual science week highlights STEM pipeline and partnerships: UB, SUNY Buffalo State and ECC team up with the City of Buffalo and its schools for April 7-11 events April 3rd, 2014

Nanomedicine

Cloaked DNA nanodevices survive pilot mission: Successful foray opens door to virus-like DNA nanodevices that could diagnose diseased tissues and manufacture drugs to treat them April 22nd, 2014

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

Amino-functionalized carbon nanotubes act as a carrier for nerve growth factor April 21st, 2014

Newly-Produced Bone Cement Able to Carry Medicine April 21st, 2014

Nanoelectronics

Progress made in developing nanoscale electronics: New research directs charges through single molecules April 21st, 2014

Better solar cells, better LED light and vast optical possibilities April 12th, 2014

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Announcements

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

PETA science consortium to present hazard testing strategy at nanotoxicology meeting: High tech field ripe for use of sophisticated non-animal testing strategies April 22nd, 2014

Harris & Harris Group Notes the Receipt of Proceeds From the Sale of Molecular Imprints' Semiconductor Business to Canon April 22nd, 2014

National Space Society Congratulates SpaceX on the Success of CRS-3 and the First Flight of the Falcon 9R April 22nd, 2014

Water

Thinnest feasible membrane produced April 17th, 2014

Trees go high-tech: process turns cellulose into energy storage devices April 7th, 2014

Dais Analytic Wins SBIR Grant: Dais Analytic Receives US Army Small Business Innovation Research Grant to Further Its Demonstrated Successes in Cleaning Most Forms of Wastewater March 28th, 2014

University of Waterloo Engineering to Showcase Student Design March 14th, 2014

Nanobiotechnology

Cloaked DNA nanodevices survive pilot mission: Successful foray opens door to virus-like DNA nanodevices that could diagnose diseased tissues and manufacture drugs to treat them April 22nd, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

In latest generation of tiny biosensors, size isn't everything: UCLA researchers overturn conventional wisdom on nanowire-based diagnostic devices April 11th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE