Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Electrons on the brink: Fractal patterns may be key to semiconductor magnetism

On the brink of the metal-insulator transition, the electrons in a manganese-doped gallium arsenide semiconductor are distributed across the surface of the material in complex, fractal-like patterns. These shapes are visible in this electron map, where the colors red, orange and yellow indicate areas on the surface of the semiconductor where electrons are most likely to be found at a given point in time. In this image, the fractal-like probability map of electrons is superimposed on the atomic crystal structure of the material, imaged at the same time. (Image: Roushan/Yazdani Research Group)
On the brink of the metal-insulator transition, the electrons in a manganese-doped gallium arsenide semiconductor are distributed across the surface of the material in complex, fractal-like patterns. These shapes are visible in this electron map, where the colors red, orange and yellow indicate areas on the surface of the semiconductor where electrons are most likely to be found at a given point in time. In this image, the fractal-like probability map of electrons is superimposed on the atomic crystal structure of the material, imaged at the same time. (Image: Roushan/Yazdani Research Group)

Abstract:
Just as the heartbeats of today's electronic devices depend on the ability to switch the flow of electricity in semiconductors on and off with lightning speed, the viability of the "spintronic" devices of the future -- technologies that manipulate both the flow and magnetic "spin" of electrons -- will require similarly precise control over semiconductor magnetism.

Electrons on the brink: Fractal patterns may be key to semiconductor magnetism

Princeton, NJ | Posted on February 7th, 2010

Achievement of this goal necessitates a detailed understanding of what happens at the exact transition point when a semiconductor changes from a metal to an insulator -- a phenomenon shrouded in mystery despite decades of examination.

But in results published Feb. 5 in the journal Science, a Princeton-led team of scientists has observed electrons in a semiconductor on the brink of the metal-insulator transition for the first time. Caught in the act, the electrons formed complex patterns resembling those seen in turbulent fluids, confirming some long-held predictions and providing new insights into how semiconductors can be turned into magnets. The work also could lead to the production of smaller and more energy-efficient computers.

"The spatial structure of the electron waves inside a given material determines how well it conducts electricity," said team leader Ali Yazdani, a Princeton professor of physics. "If the waves extend throughout the material, we get metallic behavior, but if they get localized, or stuck, in specific regions, electricity stops flowing. The way in which electrons undergo this transition in certain semiconductors also appears to play a big role in how they become magnetic."

In their natural state, semiconductors such as silicon or gallium arsenide are insulators that do not conduct electricity. For decades, scientists have known that they can transform these insulators into metals, which conduct electricity, by replacing some of the atoms in the chemical lattice structure with other atoms, for instance, replacing the gallium in gallium arsenide with zinc or manganese. This process, called doping, changes the number of electrons in the material to enable the flow of electricity, but also introduces disorder into the lattice structure that can hinder the electrons' movement and cause them to become "stuck," or localized. Conduction is able to occur only if the electrons can "hop" from atom to atom in the structure, slaloming among the randomness and disorder where the lattice has been perturbed.

The idea of electron localization goes back to the seminal work of Princeton's Joseph Henry Professor of Physics Emeritus Philip Anderson, who won the Nobel Prize in 1979 in part for proposing that localization can occur for "quantum" particles, including electrons, when they encounter random obstacles, such as in doped semiconductors. While research over the decades has found evidence for Anderson localization in many materials, the electron waves undergoing this transition never before have been visualized directly. At the transition point, computer simulations have long predicted the emergence of complex non-uniform patterns of electron waves, like the flow of water in a rocky river.

Yazdani's team originally set out to understand how doping a gallium arsenide semiconductor with manganese atoms could convert it into a magnet and "turn on" electrical conductivity in the compound. After team members at the University of California-Santa Barbara added manganese atoms to the lattice structure, the researchers used specially designed scanning tunneling microscopes at Princeton to visualize the electron states in the material.

Finding themselves confronted with complex spatial patterns of electron waves, the scientists realized that the patterns they saw were in fact those predicted for electrons on the brink of localization. In these patterns, the majority of the electrons are distributed across the surface of the semiconductor in a series of interconnected "puddles" that resemble fractals -- self-similar shapes that repeat themselves on increasingly smaller-length scales. Fractals commonly are associated with objects in nature, such as coastlines or snowflakes, but they have never before been seen for quantum particles.

These observed patterns have important implications for how a semiconductor becomes a magnet. All electrons have a property called "spin," which describes the way they rotate on their axes, generating a magnetic field as they do so. If the spins of neighboring electrons in a given material are opposite one another, these magnetic fields cancel each other out. But when the spins of neighboring electrons in a material are aligned, such that the electrons are rotating in tandem like synchronized swimmers in a pool, the material itself becomes magnetic. This alignment only occurs among the electrons of certain elements, including iron and manganese.

While it was assumed that magnetism in manganese-doped gallium arsenide occurs because the spins of all the manganese electrons in the doped semiconductor become aligned uniformly, the team's results suggested this is not the case: The alignment of spins depended on the location of electrons within the fractal puddles, indicating that there are likely areas of strong and weak magnetic interaction in the material.

"We have shown that electrons move and live in these jagged puddles, so it is only natural to consider that manganese atoms that reside within each puddle are interacting with each other and giving rise to the magnetism," Yazdani said. "In this view, where the puddles are not, we have manganese atoms but they are not interacting or contributing to magnetism. The puddles become part of the story to understand how magnetism comes about."

Manganese-doped gallium arsenide has been at the heart of many recent technological advances, and a precise understanding of what causes magnetism in these semiconductors -- and how to control it -- will be necessary for the realization of one of the most promising applications of the material: computer chips able to both process and store information. In current devices, chips made of semiconductors, such as silicon, are used to process information, which is then stored in hard drives made out of magnetic materials, such as iron. If the magnetism of a material could be switched on and off, the same chip could be used for both purposes, paving the way for smaller and more energy-efficient computers.

In the future, the team intends to explore the connection between optimizing magnetism and the shape of the fractal puddles to find further clues for the mechanism of magnetism and develop ways to enhance it. Their techniques also will allow them to explore whether electrons form similar patterns at the brink of other phase transitions, such as from conductivity to superconductivity.

Yazdani's Princeton colleagues on the team were physics professor David Huse and graduate students Anthony Richardella, also of the University of Illinois-Urbana/Champaign, Pedram Roushan and Brian Zhou. The research team also included Shawn Mack and David Awschalom of the University of California-Santa Barbara. The work was funded by the National Science Foundation, the Office of Naval Research and the Army Research Office.

####

About Princeton University
Princeton University is a vibrant community of scholarship and learning that stands in the nation's service and in the service of all nations. Chartered in 1746, Princeton is the fourth-oldest college in the United States. Princeton is an independent, coeducational, nondenominational institution that provides undergraduate and graduate instruction in the humanities, social sciences, natural sciences and engineering.

As a world-renowned research university, Princeton seeks to achieve the highest levels of distinction in the discovery and transmission of knowledge and understanding. At the same time, Princeton is distinctive among research universities in its commitment to undergraduate teaching.

Today, more than 1,100 faculty members instruct approximately 5,000 undergraduate students and 2,500 graduate students. The University's generous financial aid program ensures that talented students from all economic backgrounds can afford a Princeton education.

For more information, please click here

Contacts:
Office of Communications
Princeton University
22 Chambers Street, Suite 201
Princeton, N.J. 08542
Tel (609) 258-3601
Fax (609) 258-1301

Primary Media Contact:
Cass Cliatt
Director of Media Relations
(609) 258-6108

Copyright © Princeton University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanotech could rid cattle of ticks, with less collateral damage September 1st, 2015

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

Physics

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

Govt.-Legislation/Regulation/Funding/Policy

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Possible Futures

Sediment dwelling creatures at risk from nanoparticles in common household products August 13th, 2015

Harris & Harris Group Reports Financial Statements as of June 30, 2015, and Announces a Stock Repurchase Program August 10th, 2015

Molecular trick alters rules of attraction for non-magnetic metals August 5th, 2015

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Spintronics

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Penn researchers discover new chiral property of silicon, with photonic applications July 25th, 2015

Spintronics just got faster July 20th, 2015

Fundamental observation of spin-controlled electrical conduction in metals: Ultrafast terahertz spectroscopy yields direct insight into the building block of modern magnetic memories July 6th, 2015

Nanoelectronics

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

'Quantum dot' technology may help light the future August 19th, 2015

Surprising discoveries about 2-D molybdenum disulfide: Berkeley Lab researchers use award-winning campanile probe on promising semiconductor August 15th, 2015

Small tilt in magnets makes them viable memory chips August 3rd, 2015

Discoveries

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Announcements

Nanotech could rid cattle of ticks, with less collateral damage September 1st, 2015

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Tools

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Nanometrics to Participate in the Citi 2015 Global Technology Conference August 26th, 2015

50 Years of Scanning Electron Microscopy from ZEISS: ZEISS celebrates the birth of the first commercial scanning electron microscope in 1965 August 26th, 2015

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic