Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Electrons on the brink: Fractal patterns may be key to semiconductor magnetism

On the brink of the metal-insulator transition, the electrons in a manganese-doped gallium arsenide semiconductor are distributed across the surface of the material in complex, fractal-like patterns. These shapes are visible in this electron map, where the colors red, orange and yellow indicate areas on the surface of the semiconductor where electrons are most likely to be found at a given point in time. In this image, the fractal-like probability map of electrons is superimposed on the atomic crystal structure of the material, imaged at the same time. (Image: Roushan/Yazdani Research Group)
On the brink of the metal-insulator transition, the electrons in a manganese-doped gallium arsenide semiconductor are distributed across the surface of the material in complex, fractal-like patterns. These shapes are visible in this electron map, where the colors red, orange and yellow indicate areas on the surface of the semiconductor where electrons are most likely to be found at a given point in time. In this image, the fractal-like probability map of electrons is superimposed on the atomic crystal structure of the material, imaged at the same time. (Image: Roushan/Yazdani Research Group)

Abstract:
Just as the heartbeats of today's electronic devices depend on the ability to switch the flow of electricity in semiconductors on and off with lightning speed, the viability of the "spintronic" devices of the future -- technologies that manipulate both the flow and magnetic "spin" of electrons -- will require similarly precise control over semiconductor magnetism.

Electrons on the brink: Fractal patterns may be key to semiconductor magnetism

Princeton, NJ | Posted on February 7th, 2010

Achievement of this goal necessitates a detailed understanding of what happens at the exact transition point when a semiconductor changes from a metal to an insulator -- a phenomenon shrouded in mystery despite decades of examination.

But in results published Feb. 5 in the journal Science, a Princeton-led team of scientists has observed electrons in a semiconductor on the brink of the metal-insulator transition for the first time. Caught in the act, the electrons formed complex patterns resembling those seen in turbulent fluids, confirming some long-held predictions and providing new insights into how semiconductors can be turned into magnets. The work also could lead to the production of smaller and more energy-efficient computers.

"The spatial structure of the electron waves inside a given material determines how well it conducts electricity," said team leader Ali Yazdani, a Princeton professor of physics. "If the waves extend throughout the material, we get metallic behavior, but if they get localized, or stuck, in specific regions, electricity stops flowing. The way in which electrons undergo this transition in certain semiconductors also appears to play a big role in how they become magnetic."

In their natural state, semiconductors such as silicon or gallium arsenide are insulators that do not conduct electricity. For decades, scientists have known that they can transform these insulators into metals, which conduct electricity, by replacing some of the atoms in the chemical lattice structure with other atoms, for instance, replacing the gallium in gallium arsenide with zinc or manganese. This process, called doping, changes the number of electrons in the material to enable the flow of electricity, but also introduces disorder into the lattice structure that can hinder the electrons' movement and cause them to become "stuck," or localized. Conduction is able to occur only if the electrons can "hop" from atom to atom in the structure, slaloming among the randomness and disorder where the lattice has been perturbed.

The idea of electron localization goes back to the seminal work of Princeton's Joseph Henry Professor of Physics Emeritus Philip Anderson, who won the Nobel Prize in 1979 in part for proposing that localization can occur for "quantum" particles, including electrons, when they encounter random obstacles, such as in doped semiconductors. While research over the decades has found evidence for Anderson localization in many materials, the electron waves undergoing this transition never before have been visualized directly. At the transition point, computer simulations have long predicted the emergence of complex non-uniform patterns of electron waves, like the flow of water in a rocky river.

Yazdani's team originally set out to understand how doping a gallium arsenide semiconductor with manganese atoms could convert it into a magnet and "turn on" electrical conductivity in the compound. After team members at the University of California-Santa Barbara added manganese atoms to the lattice structure, the researchers used specially designed scanning tunneling microscopes at Princeton to visualize the electron states in the material.

Finding themselves confronted with complex spatial patterns of electron waves, the scientists realized that the patterns they saw were in fact those predicted for electrons on the brink of localization. In these patterns, the majority of the electrons are distributed across the surface of the semiconductor in a series of interconnected "puddles" that resemble fractals -- self-similar shapes that repeat themselves on increasingly smaller-length scales. Fractals commonly are associated with objects in nature, such as coastlines or snowflakes, but they have never before been seen for quantum particles.

These observed patterns have important implications for how a semiconductor becomes a magnet. All electrons have a property called "spin," which describes the way they rotate on their axes, generating a magnetic field as they do so. If the spins of neighboring electrons in a given material are opposite one another, these magnetic fields cancel each other out. But when the spins of neighboring electrons in a material are aligned, such that the electrons are rotating in tandem like synchronized swimmers in a pool, the material itself becomes magnetic. This alignment only occurs among the electrons of certain elements, including iron and manganese.

While it was assumed that magnetism in manganese-doped gallium arsenide occurs because the spins of all the manganese electrons in the doped semiconductor become aligned uniformly, the team's results suggested this is not the case: The alignment of spins depended on the location of electrons within the fractal puddles, indicating that there are likely areas of strong and weak magnetic interaction in the material.

"We have shown that electrons move and live in these jagged puddles, so it is only natural to consider that manganese atoms that reside within each puddle are interacting with each other and giving rise to the magnetism," Yazdani said. "In this view, where the puddles are not, we have manganese atoms but they are not interacting or contributing to magnetism. The puddles become part of the story to understand how magnetism comes about."

Manganese-doped gallium arsenide has been at the heart of many recent technological advances, and a precise understanding of what causes magnetism in these semiconductors -- and how to control it -- will be necessary for the realization of one of the most promising applications of the material: computer chips able to both process and store information. In current devices, chips made of semiconductors, such as silicon, are used to process information, which is then stored in hard drives made out of magnetic materials, such as iron. If the magnetism of a material could be switched on and off, the same chip could be used for both purposes, paving the way for smaller and more energy-efficient computers.

In the future, the team intends to explore the connection between optimizing magnetism and the shape of the fractal puddles to find further clues for the mechanism of magnetism and develop ways to enhance it. Their techniques also will allow them to explore whether electrons form similar patterns at the brink of other phase transitions, such as from conductivity to superconductivity.

Yazdani's Princeton colleagues on the team were physics professor David Huse and graduate students Anthony Richardella, also of the University of Illinois-Urbana/Champaign, Pedram Roushan and Brian Zhou. The research team also included Shawn Mack and David Awschalom of the University of California-Santa Barbara. The work was funded by the National Science Foundation, the Office of Naval Research and the Army Research Office.

####

About Princeton University
Princeton University is a vibrant community of scholarship and learning that stands in the nation's service and in the service of all nations. Chartered in 1746, Princeton is the fourth-oldest college in the United States. Princeton is an independent, coeducational, nondenominational institution that provides undergraduate and graduate instruction in the humanities, social sciences, natural sciences and engineering.

As a world-renowned research university, Princeton seeks to achieve the highest levels of distinction in the discovery and transmission of knowledge and understanding. At the same time, Princeton is distinctive among research universities in its commitment to undergraduate teaching.

Today, more than 1,100 faculty members instruct approximately 5,000 undergraduate students and 2,500 graduate students. The University's generous financial aid program ensures that talented students from all economic backgrounds can afford a Princeton education.

For more information, please click here

Contacts:
Office of Communications
Princeton University
22 Chambers Street, Suite 201
Princeton, N.J. 08542
Tel (609) 258-3601
Fax (609) 258-1301

Primary Media Contact:
Cass Cliatt
Director of Media Relations
(609) 258-6108

Copyright © Princeton University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

State-of-the-art online system unveiled to pinpoint metrology software accuracy March 27th, 2015

Physics

A first glimpse inside a macroscopic quantum state March 28th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Possible Futures

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Nanotechnology Drug Delivery Market in the US 2012-2016 : Latest Report Available by Radiant Insights, Inc March 16th, 2015

Spintronics

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

Insight into inner magnetic layers: Measurements at BESSY II have shown how spin filters forming within magnetic sandwiches influence tunnel magnetoresistance -- results that can help in designing spintronic component- February 17th, 2015

A new spin on spintronics: Michigan team tests radiation-resistant spintronic material, possibly enabling electronic devices that will work in harsh environments February 17th, 2015

Nanoscale Mirrored Cavities Amplify, Connect Quantum Memories: Advance could lead to quantum computing and the secure transfer of information over long-distance fiber optic networks January 28th, 2015

Nanoelectronics

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

UW scientists build a nanolaser using a single atomic sheet March 24th, 2015

Iranian Researchers Present Model to Determine Dynamic Behavior of Nanostructures March 24th, 2015

Sharper nanoscopy: What happens when a quantum dot looks in a mirror? March 19th, 2015

Discoveries

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Announcements

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Tools

LAMDAMAP 2015 hosted by the University March 26th, 2015

FEI Technology Award of the German Neuroscience Society Goes to Benjamin Judkewitz of the University of Berlin: Bi-annual award honors excellence in brain research during the German Neuroscience Society’s Annual Meeting, held 18-21 March 2015 March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Nanorobotic agents open the blood-brain barrier, offering hope for new brain treatments March 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE