Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Conductive eTextiles: Stanford finds a new use for cloth

Recipe for conductive textile: Dip cloth in nanotube ink, dry in oven for 10 minutes at 120 degrees Celsius.
Recipe for conductive textile: Dip cloth in nanotube ink, dry in oven for 10 minutes at 120 degrees Celsius.

Abstract:
Stanford researchers have moved from making batteries from paper to making batteries from cloth. Your-T-shirt could become a lighted, moving display.

Conductive eTextiles: Stanford finds a new use for cloth

Stanford, CA | Posted on February 5th, 2010

A team of Stanford researchers is producing batteries and simple capacitors from ordinary textiles dipped in nanoparticle-infused ink. The conductive textiles - dubbed "eTextiles" - represent a new class of integrated energy storage device, born from the synthesis of prehistoric technology with cutting-edge materials science.

"We have been developing all kinds of materials, trying to revolutionize battery performance," said Yi Cui, assistant professor of materials science and engineering at Stanford. "Recently, we started to think about how to make batteries in a very different way from before."

While conventional batteries are made by coating metallic foil in a particle slurry and rolling it into compact form - a capital-intensive process - the new energy textiles were manufactured using a simple "dipping and drying" procedure, whereby a strip of fabric is coated with a special ink formula and dehydrated in the oven.

The procedure works for manufacturing batteries or supercapacitors, depending on the contents of the ink - oxide particles such as LiCoO2 for batteries; conductive carbon molecules (single-walled carbon nanotubes, or SWNTs) for supercapacitors. Up to now, the team has only used black ink, but Cui said it is possible to produce a range of colors by adding different dyes to the carbon nanotubes.

Efficient energy storage

What's more, the lightweight, flexible and porous character of natural and synthetic fibers has proven to be an ideal platform for absorbing conductive ink particles, according to postdoctoral scholar Liangbing Hu, who led the energy textile research. That helps explain why treated textiles make such efficient energy storage devices, he said.

Cui's team had previously developed paper batteries and supercapacitors using a similar process, but the new energy textiles exhibited some clear advantages over their paper predecessors. With a reported energy density of 20 Watt-hours per kilogram, a piece of eTextile weighing 0.3 kilograms (about an ounce, the approximate weight of a T-shirt) could hold up to three times more energy than a cell phone battery.

Aside from enhanced energy storage capacity, eTextiles are remarkably durable and can withstand greater mechanical stress.

"The whole thing can be stretchable as well, and extend to more than twice its length," Hu explained. "You can wash it, put it in all kinds of solvents - it's very stable."

The potential applications of wearable power are manifold, ranging from health monitoring to moving-display apparel. (The latter, Cui mused, would make quite a splash if worn by Stanford sports teams.)

Cui said the new eTextiles are generating buzz at industry conventions, where big-name brands have expressed an interest in developing reactive, high-performance sportswear using the new technology. The U.S. military also is probing the possibility of integrating energy textiles into its battle array, a move that may one day lighten a soldier's carrying load.

Interest in developing new markets

"There's a really strong interest in developing new markets in consumer electronics," Cui summarized. "We aren't there yet, but this is an emergent industry."

In the meantime, the team will continue its current research trajectory with two themes in mind: how best to introduce eTextiles into real markets, and the fundamental science behind what makes their product work so effectively.

"This is the right time to really see what we learn from nanoscience and do practical applications that [are] extremely promising," Cui said. "The beauty of this is it combines the lowest cost technology that you can find to the highest tech nanotechnology to produce something great. I think this is a very exciting idea … a huge impact for society."

The team's findings appear in the January online edition of Nano Letters, a publication of the American Chemical Society, under the title "Stretchable, Porous, and Conductive Energy Textiles."

Aimee Miles is a science-writing intern at the Stanford News Service.

####

About Stanford University
Located between San Francisco and San Jose in the heart of Silicon Valley, Stanford University is recognized as one of the world's leading research and teaching institutions.

For more information, please click here

Contacts:
Media Contact
Dan Stober
Stanford News Service
(650) 721-6965

Copyright © Stanford University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NREL Announces New Center Directors to lead R&D, Analysis Efforts September 30th, 2014

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Speed at its limits September 30th, 2014

Research mimics brain cells to boost memory power September 30th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Nanotubes/Buckyballs

Elsevier Publishes New Content on Graphene and Materials Science: Books Discuss Properties and Emerging Applications of Carbon Nanotubes, Graphene and Nanomaterials September 25th, 2014

Future flexible electronics based on carbon nanotubes: Study in Applied Physics Letters show how to improve nanotube transistor and circuit performance with fluoropolymers September 23rd, 2014

Nanotubes help healing hearts keep the beat: Rice University, Texas Children’s Hospital patch for defects enhances electrical connections between cells September 23rd, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Announcements

Park Systems Announces Outsourced Analytical Services Including AFM Surface Imaging, Data Analysis and Interpretation September 30th, 2014

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

Military

UT Arlington researchers develop transparent nanoscintillators for radiation detection for medical safety and homeland security September 29th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Nanotechnology leads to better, cheaper LEDs for phones and lighting September 24th, 2014

Engineered proteins stick like glue — even in water: New adhesives based on mussel proteins could be useful for naval or medical applications September 22nd, 2014

Sports

‘Small’ transformation yields big changes September 16th, 2014

CEA-Leti and CORIMA Team up on Force Sensors Integrated in Cycle Wheels to Measure Rider Power Output June 26th, 2014

‘Four!' Heads Up, Wide Use of More Flexible Metallic Glass Coming Your Way: Advances in Glass Alloys Lead to Strength, Flexibility March 4th, 2014

ASTM International Nanotechnology Committee Approves Airborne Nanoparticle Measurement Standard December 10th, 2013

Textiles/Clothing

Teijin Aramid’s carbon nanotube fibers awarded with Paul Schlack prize: New generation super fibers bring wave of innovations to fiber market September 25th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Silver Replaced with Copper Nanoparticles to Produce Antibacterial Fabrics August 25th, 2014

New Nanosorbent Helps Elimination of Colorants from Textile Wastewater August 25th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

Graphene and Amaranthus Superparamagnets: Breakthrough nanoparticles discovery of Indian researcher September 23rd, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

NEI Corporation and PneumatiCoat Technologies Sign Agreement to Jointly Develop and Market New Materials for Lithium-ion Batteries September 12th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE