Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Conductive eTextiles: Stanford finds a new use for cloth

Recipe for conductive textile: Dip cloth in nanotube ink, dry in oven for 10 minutes at 120 degrees Celsius.
Recipe for conductive textile: Dip cloth in nanotube ink, dry in oven for 10 minutes at 120 degrees Celsius.

Abstract:
Stanford researchers have moved from making batteries from paper to making batteries from cloth. Your-T-shirt could become a lighted, moving display.

Conductive eTextiles: Stanford finds a new use for cloth

Stanford, CA | Posted on February 5th, 2010

A team of Stanford researchers is producing batteries and simple capacitors from ordinary textiles dipped in nanoparticle-infused ink. The conductive textiles - dubbed "eTextiles" - represent a new class of integrated energy storage device, born from the synthesis of prehistoric technology with cutting-edge materials science.

"We have been developing all kinds of materials, trying to revolutionize battery performance," said Yi Cui, assistant professor of materials science and engineering at Stanford. "Recently, we started to think about how to make batteries in a very different way from before."

While conventional batteries are made by coating metallic foil in a particle slurry and rolling it into compact form - a capital-intensive process - the new energy textiles were manufactured using a simple "dipping and drying" procedure, whereby a strip of fabric is coated with a special ink formula and dehydrated in the oven.

The procedure works for manufacturing batteries or supercapacitors, depending on the contents of the ink - oxide particles such as LiCoO2 for batteries; conductive carbon molecules (single-walled carbon nanotubes, or SWNTs) for supercapacitors. Up to now, the team has only used black ink, but Cui said it is possible to produce a range of colors by adding different dyes to the carbon nanotubes.

Efficient energy storage

What's more, the lightweight, flexible and porous character of natural and synthetic fibers has proven to be an ideal platform for absorbing conductive ink particles, according to postdoctoral scholar Liangbing Hu, who led the energy textile research. That helps explain why treated textiles make such efficient energy storage devices, he said.

Cui's team had previously developed paper batteries and supercapacitors using a similar process, but the new energy textiles exhibited some clear advantages over their paper predecessors. With a reported energy density of 20 Watt-hours per kilogram, a piece of eTextile weighing 0.3 kilograms (about an ounce, the approximate weight of a T-shirt) could hold up to three times more energy than a cell phone battery.

Aside from enhanced energy storage capacity, eTextiles are remarkably durable and can withstand greater mechanical stress.

"The whole thing can be stretchable as well, and extend to more than twice its length," Hu explained. "You can wash it, put it in all kinds of solvents - it's very stable."

The potential applications of wearable power are manifold, ranging from health monitoring to moving-display apparel. (The latter, Cui mused, would make quite a splash if worn by Stanford sports teams.)

Cui said the new eTextiles are generating buzz at industry conventions, where big-name brands have expressed an interest in developing reactive, high-performance sportswear using the new technology. The U.S. military also is probing the possibility of integrating energy textiles into its battle array, a move that may one day lighten a soldier's carrying load.

Interest in developing new markets

"There's a really strong interest in developing new markets in consumer electronics," Cui summarized. "We aren't there yet, but this is an emergent industry."

In the meantime, the team will continue its current research trajectory with two themes in mind: how best to introduce eTextiles into real markets, and the fundamental science behind what makes their product work so effectively.

"This is the right time to really see what we learn from nanoscience and do practical applications that [are] extremely promising," Cui said. "The beauty of this is it combines the lowest cost technology that you can find to the highest tech nanotechnology to produce something great. I think this is a very exciting idea … a huge impact for society."

The team's findings appear in the January online edition of Nano Letters, a publication of the American Chemical Society, under the title "Stretchable, Porous, and Conductive Energy Textiles."

Aimee Miles is a science-writing intern at the Stanford News Service.

####

About Stanford University
Located between San Francisco and San Jose in the heart of Silicon Valley, Stanford University is recognized as one of the world's leading research and teaching institutions.

For more information, please click here

Contacts:
Media Contact
Dan Stober
Stanford News Service
(650) 721-6965

Copyright © Stanford University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New Hopes for Treatment of Intestine Cancer by Edible Nanodrug March 2nd, 2015

Imec, Holst Centre and Renesas Present World’s Lowest Power 2.4GHz Radio Chip for Bluetooth Low Energy March 1st, 2015

Imec, Murata, and Huawei Introduce Breakthrough Solution for TX-to-RX Isolation in Reconfigurable, Multiband Front-End Modules for Mobile Phones: Electrical-Balance Duplexers Pave the Way to Integrated Solution for TX-to-RX Isolation March 1st, 2015

Imec Demonstrates Compact Wavelength-Division Multiplexing CMOS Silicon Photonics Transceiver March 1st, 2015

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Nanotubes/Buckyballs

Chromium-Centered Cycloparaphenylene Rings as New Tools for Making Functionalized Nanocarbons February 24th, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Half spheres for molecular circuits: Corannulene shows promising electronic properties February 17th, 2015

SouthWest Nanotechnologies CEO Dave Arthur Appointed to the Board of Affiliates of Rice University Professional Science Master’s Program February 13th, 2015

Announcements

New Hopes for Treatment of Intestine Cancer by Edible Nanodrug March 2nd, 2015

Imec Demonstrates Compact Wavelength-Division Multiplexing CMOS Silicon Photonics Transceiver March 1st, 2015

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Military

Simulating superconducting materials with ultracold atoms: Rice physicists build superconductor analog, observe antiferromagnetic order February 23rd, 2015

Perfect colors, captured with one ultra-thin lens: No need for color correction -- Harvard physicists' flat optics, using nanotechnology, get it right the first time February 19th, 2015

Penn researchers develop new technique for making molybdenum disulfide: Extra control over monolayer material with advantages over graphene February 19th, 2015

New nanogel for drug delivery: Self-healing gel can be injected into the body and act as a long-term drug depot February 19th, 2015

Sports

Researchers use nanotechnology to engineer ACL replacements: Researchers created a tri-component, synthetic graft for reconstructing torn anterior cruciate ligaments December 30th, 2014

‘Small’ transformation yields big changes September 16th, 2014

CEA-Leti and CORIMA Team up on Force Sensors Integrated in Cycle Wheels to Measure Rider Power Output June 26th, 2014

‘Four!' Heads Up, Wide Use of More Flexible Metallic Glass Coming Your Way: Advances in Glass Alloys Lead to Strength, Flexibility March 4th, 2014

Textiles/Clothing

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts February 3rd, 2015

Graphene displays clear prospects for flexible electronics February 2nd, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

Dendrite eraser: New electrolyte rids batteries of short-circuiting fibers: Solution enables a battery with both high efficiency & current density February 24th, 2015

New Paper-like Material Could Boost Electric Vehicle Batteries: Researchers create silicon nanofibers 100 times thinner than human hair for potential applications in batteries for electric cars and personal electronics February 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE