Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > High, not flat: nanowires for a new chip architecture

3D scheme of a usual transistor (left) and of a novel vertical transistor made out of silicon. The arrows symbolize the current flow. Sander Münster, Dresden.
3D scheme of a usual transistor (left) and of a novel vertical transistor made out of silicon. The arrows symbolize the current flow. Sander Münster, Dresden.

Abstract:
Silicon is the most prevalent material in electronics, no matter whether for mobile phones, solar cells or computers. Nanometer-sized wires made of silicon have a large potential for a completely new chip architecture. But this requires a detailed investigation and understanding of their electronic properties which is technologically challenging due to the ultra-small size of the nanowires. Researchers from the Max Planck Institute of Microstructure Physics and the Forschungszentrum Dresden-Rossendorf (FZD) were able to describe the electrical resistance and current flow inside individual silicon nanowires. The results were published in the journal NANO LETTERS.

High, not flat: nanowires for a new chip architecture

Dresden, Germany | Posted on February 2nd, 2010

Nowadays, a myriad of silicon transistors are responsible to pass on the information on a microchip. The transistors are arranged in a planar array, i.e. lying flat next to each other, and have shrunk down already to a size of only about 50 nanometers (1 nanometer = 1 millionth part of 1 millimeter). Further miniaturization of transistors with a planar structure will soon come to an end due to fundamental physical limits. Still, even smaller transistors are desirable in order to continuously improve their functions while reducing the cost of the electronics.

Currently, researchers are working hard to find new approaches to overcome the physical limits on downscaling and integration of microchips. One such concept is to fabricate a completely new transistor architecture in three-dimensions. In this concept, instead of arranging them flat on the substrate the silicon transistors are turned by 90 degrees so that they stick out of the chip substrate like tiny columns. In this way, numerous vertical transistors could be built on the area normally occupied by only one planar transistor. This would finally be the step from micro to nanoelectronics.

The fabrication of vertical silicon nanowire arrays has already been reported. Yet there needs to be a more thorough research into the electrical properties of silicon nanowires in order to be able to build reliable transistors for a new generation of microchips. Unlike conventional transistors, the current flow in these column-like transistors will be vertical, and they will be smaller and more energy-saving than today. Last but not least, there are high hopes to fabricate extremely efficient solar cells using silicon nanowires.

The Max Planck researchers in Halle produce monocrystalline silicon nanowires which are particularly suitable as components for microchips. At the FZD's ion beam center, foreign atoms known as ‘dopants' are implanted into the nanowires. The dopants occupy lattice sites of the host semiconductor increasing the electrical conductivity and the current flow through the semiconductor. Selective implantation of different dopants can change the polarity of the charge carriers in a transistor leading to the switching of the current flow. The planar silicon technology is well developed; however, this is not true for silicon nanostructures. "First, we analyzed wires with a diameter of 100 nanometers and 300 nanometers in length. But what we aim at are wires with a diameter of a few atoms only, as well as wires where individual atoms are strung together. We intend to closely characterize their behavior in materials and want to find out how their electrical properties can be tailored for application in nanoelectronics, e.g. for new field-effect transistors," say FZD physicists Dr. Reinhard Koegler and Dr. Xin Ou.

The nanowires were investigated in Rossendorf using a technique (Scanning Spreading Resistance Microscopy, SSRM) that usually measures the position- dependent electrical resistivity in a specially-prepared two-dimensional cross-section of the nanowire. The resistivity is related to the atomic concentration of the dopants. In the current work, the researchers have found that the dopants in a silicon nanowire, namely boron and phorphorus, do not stay where they are expected, but drift to the surface of the nanowire where they become partially inactive and can no longer contribute to the electrical conductivity. Up until now scientists were lacking an appropriate technique to visualize and quantify the consequences of an unequal distribution of dopants at the nanoscale. Chip designers have to pay attention to the newly found results if nanowires are to be applied for vertical transistors in the future.

Publication:
Xin Ou,†,‡,§, Pratyush Das Kanungo,†, Reinhard Kögler,‡, Peter Werner,†, Ulrich Gösele,†, Wolfgang Skorupa,‡, Xi Wang, §, "Carrier Profiling of Individual Si Nanowires by Scanning Spreading Resistance Microscopy", in: Nano Letters 2010,10,171-175, DOI: 10.1021/nl903228s.

†Max Planck Institute of Microstructure Physics, Halle; ‡ Institute of Ion Beam Physics and Materials Research, FZD; §Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai


####

About Forschungszentrum Dresden-Rossendorf (FZD)
The Forschungszentrum Dresden-Rossendorf, now a member of the Leibniz Association, will become new member of the Helmholtz Association as of January 2011. It is engaged in basic and application-oriented research. The main topics are:

* Advanced Materials Research
* Cancer Research
* Nuclear Safety Research

For more information, please click here

Contacts:
Dr. Wolfgang Skorupa / Dr. Reinhard Kögler
Institute of Ion beam Physics and Materials Research
Forschungszentrum Dresden-Rossendorf
Phone: +49 (0) 351 260 - 3612 / - 3613

Dr. Peter Werner
Max Planck Institute of Microstructure Physics, Halle
Phone: +49 (0) 3455582629
www.mpi-halle.mpg.de/

Contact for the media:
Dr. Christine Bohnet
Press and public relations at FZD
Bautzner Landstr. 400, 01328 Dresden
Phone: +49 (0) 351 260 - 2450 oder 0160 969 288 56
Fax: 0351 260 - 2700

Copyright © Forschungszentrum Dresden-Rossendorf (FZD)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Possible Futures

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Chip Technology

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

Nanoelectronics

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

A SOI wafer is a suitable substrate for gallium nitride crystals: Improved characteristics in power electronics and radio applications can be achieved by using a SOI wafer for gallium nitride growth March 4th, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Announcements

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Tools

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

CRMGroup in Belgium uses a Deben three point bending stage in the development of new steel & coated steel products for automotive and other industrial applications March 21st, 2017

Next-gen steel under the microscope March 18th, 2017

Solar/Photovoltaic

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

New nanofiber marks important step in next generation battery development March 14th, 2017

Perovskite edges can be tuned for optoelectronic performance: Layered 2D material improves efficiency for solar cells and LEDs March 10th, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project