Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Graphite oxide at high pressure opens a road to new amazing nano-materials

Abstract:
New results by scientists at Umeň University show that not only water but also alcohol solvents can be inserted to expand the structure of graphite oxide under high pressure conditions. The information is helpful in the search for new methods to develop amazing materials that could be used for instance in nanoelectronics and for energy storage.

Graphite oxide at high pressure opens a road to new amazing nano-materials

Sweden | Posted on December 21st, 2009

Graphite oxide has a layered structure like common graphite, used in pencils, but with increased distance between the layers. It also has a unique ability to incorporate various solvents between the layers. Even after 150 years of studies the structure of graphite oxide remains to be somewhat of a mystery.

The interest in graphite oxide has recently been heated up due to the possibility to convert it to graphene - a sheet of carbon only one atom thick. Graphene has the potential to serve as the basis of an entirely new class of materials, which are ultra-strong yet lightweight. The extraordinary materials could for instance be used for nanoelectronics, in solar cells, for preparation of exceptionally strong paper, and to improve fuel efficiency in cars and airplanes. Graphite oxide can be converted into graphene by moderate heating and even by a flash from a usual camera. An alternative method is chemical treatment of graphite oxide dispersed in solution. To make conversion of graphite oxide to graphene more efficient researchers need to know detailed information about the structure of graphite oxide, including its structure in solution at various conditions.

"We have found a range of new phenomena for graphite oxide at high pressure conditions. This gives additional possibilities to develop new composite graphene-related materials using high pressure treatment and to modify graphite oxide chemically. Clearly, we can insert larger molecules between graphite oxide layers due to the expansion of the lattice at high pressure conditions. Also, when layers of graphite oxide are separated by several layers of solvent it is more likely that they will stay separated after reduction thus preventing formation of graphite and assisting the synthesis of graphene", says Dr Alexandr Talyzin.

Last year an international team of scientists from Sweden, Hungary, Germany and France reported an unusual property of graphite oxide: the structure expanded under high pressure conditions due to insertion of liquid water. The new study lead by scientists from Umeň University and performed at the Swiss-Norwegian beamline (ESRF, Grenoble) reports that not only water but also alcohol solvents (methanol and ethanol) can be inserted between oxidized graphene layers under high pressure conditions.

"However, it happens in a very different way compared to when water is inserted under high pressure. Alcohol is inserted in a single step as a complete layer in the structure at a certain pressure while water insertion occurs gradually, without clear steps", says dr Alexandr Talyzin.
Experiments with methanol and water mixtures proved that water between the layers of graphite oxide is in the liquid state and remains to be liquid even when bulk water solidifies around grains of the material.

"The extra amount of water and methanol is also released from the structure when the pressure decreases, which results in a unique structural "breathing" effect. It is also remarkable that for ethanol the high pressure expanded structure was observed even after full release of pressure", says Dr Alexandr Talyzin.

The experiments were performed using diamond anvil cells, which allow to squeeze tiny samples up to very high pressures and to study phase transformations using X-ray diffraction through diamonds.
The new results are published in J. Am. Chem. Soc by Alexandr V. Talyzin, Bertil Sundqvist, (Sweden), Tamßs Szabˇ, Imre Dekany (Hungary) and Vladimir Dmitriev (France).

pubs.acs.org/doi/full/10.1021/ja907492s

####

About Umeň University
Umeň University was founded in 1965 and is Sweden's fifth oldest university. Today, we have a strong international and multicultural presence with students, teachers and researchers from all over the world. Our main campus - with its 29,000 students and 4,000 employees - is alive with enthusiasm, creativity and fresh ideas.

We constantly strive towards making it one of Scandinavia's best environments for study and research that meets the challenges of an ever-increasing global society.

For more information, please click here

Contacts:
Dr Alexandr Talyzin, Department of Physics, Umeň University,
Phone: +46 (0)90-786 63 20

Copyright © Umeň University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Possible Futures

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Nanoelectronics

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

With simple process, UW-Madison engineers fabricate fastest flexible silicon transistor April 21st, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Announcements

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Energy

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Flipping a chemical switch helps perovskite solar cells beat the heat April 26th, 2016

New spin Seebeck thermoelectric device with higher conversion efficiency created April 26th, 2016

Automotive/Transportation

New spin Seebeck thermoelectric device with higher conversion efficiency created April 26th, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Ruthenium nanoframes open the doors to better catalysts April 4th, 2016

Heat and light get larger at the nanoscale: Columbia-led research team first to demonstrate a strong, non-contact heat transfer channel using light with performances that could lead to high efficiency electricity generation April 2nd, 2016

Aerospace/Space

Physicists detect the enigmatic spin momentum of light April 26th, 2016

Team builds first quantum cascade laser on silicon: Eliminates the need for an external light source for mid-infrared silicon photonic devices or photonic circuits April 21st, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Acclaimed Science Fiction Author Dr. Jerry Pournelle Wins the National Space Society Robert A. Heinlein Award April 13th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

New spin Seebeck thermoelectric device with higher conversion efficiency created April 26th, 2016

Highlights from the Graphene Flagship April 22nd, 2016

Adding some salt to the recipe for energy storage materials: Researchers use common table salt as growth template April 22nd, 2016

Cleaning up hybrid battery electrodes improves capacity and lifespan: New way of building supercapacitor-battery electrodes eliminates interference from inactive components April 22nd, 2016

Solar/Photovoltaic

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Flipping a chemical switch helps perovskite solar cells beat the heat April 26th, 2016

Manipulating light inside opaque layers April 24th, 2016

Thin-film solar cells: How defects appear and disappear in CIGSe cells: Concentration of copper plays a crucial role April 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic