Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Measuring Electron Orbitals

A recent SCIENCE paper sheds a new light on electron density in individual molecular states
A recent SCIENCE paper sheds a new light on electron density in individual molecular states

Abstract:
For the first time, it has been possible to measure electron density in individual molecular states using what is known as the photoelectric effect. Now published in SCIENCE, this method represents a key building block in the development of organic semiconductor elements. Supported by the Austrian Science Fund FWF, the success of this project rested on the mathematical transformation of the measured data. This made it possible to interpret the distribution of the electrons and draw conclusions about the potential properties of organic semiconductor elements.

Measuring Electron Orbitals

Austria | Posted on November 16th, 2009

Ultra-thin films made of organic molecules form the basis of future semiconductor technologies. Because organic molecules are extremely flexible, they can be used in a whole new range of applications, making it equally possible to create pliable screens and cost-effective solar cells. However, apart from these everyday applications for organic semiconductors, the most important task is to gain a better understanding of the interactions between organic materials and inorganic carrier substances. A team from the Universities of Graz and Leoben has now succeeded in developing a means of doing just that.

Tightly Packed

"The properties of an organic molecule are defined to a large extent by specific electron states", explains Dr. Peter Puschnig of the Chair of Atomistic Modelling and Design of Materials at the University of Leoben, who led the research. He adds: "If we can determine their distribution within the molecule accurately, then we will be able to better understand how organic semiconductor components work and thus increase their efficiency." Until now, there has been a lack of effective methods of measuring this electron distribution. Dr. Puschnig and his team have therefore succeeded in making significant progress.

The team's achievement is based on the use of the photoelectric effect. This enables individual electrons to be "knocked out" of organic molecules. As part of this project, an organic molecule was exposed to ultraviolet light that emitted sufficient energy to separate individual electrons from the molecules. The direction and speed of the electrons thus released were then measured using highly-sensitive detectors, generating the basic data required to calculate the electron distribution within the molecule. As part of this process, Prof. Michael Ramsay and his team from the University of Graz used a hexaphenyl film just one molecule thick that had been applied to a copper surface. The team from Graz carried out the actual measurements at the Berliner Elektronen-Speicherring Gesellschaft für Synchrotronstrahlung (BESSY, Berlin Electron Storage Ring Society for Synchrotron Radiation).

A Calculated Result

Commenting on the evaluation of this data, Dr. Puschnig says: "It revealed a quite characteristic distribution of the electrons emitted. However, it initially proved difficult to interpret this distribution and it seemed it would be impossible to link the measured data to the original electron distribution in the molecule." It was only by using special mathematical transformations (Fourier Transformation) that the team was able to establish that the measured electron distribution matched that of the molecule. As the distribution was in this instance already known from calculations carried out as part of the density functional theory, it was possible to test and confirm the viability of the new method.

This new method is particularly valuable as it means measuring the behaviour of electrons at the interfaces between organic semiconductors and metals is now relatively easy and highly accurate. The study "Interface controlled and functionalised organic thin films" supported by the FWF as part of the National Research Network (NFN) is thus making a fundamental contribution to future applications of organic semiconductors.

Original publication: Reconstruction of Molecular Orbital Densities from Photoemission Data, P. Puschnig, S. Berkebile, A. J. Fleming, G. Koller, K. Emtsev, T. Seyller, J. D. Riley, C. Ambrosch­Draxl, F. P. Netzer, M. G. Ramsey: Science 326, 702 (2009).

####

About Austrian Science Fund
The Austrian Science Fund (FWF) is Austria's central funding organization for basic research.

The purpose of the FWF is to support the ongoing development of Austrian science and basic research at a high international level. In this way, the FWF makes a significant contribution to cultural development, to the advancement of our knowledge-based society, and thus to the creation of value and wealth in Austria.

For more information, please click here

Contacts:
Scientific contact
Dr. Peter Puschnig
University of Leoben
Chair for Atomistic Modelling and Design of Materials
Austria
T +43 / 3842 / 402 4403


Austrian Science Fund (FWF)
Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna
Austria
T +43 / 1 / 505 67 40 - 8111


Editor/publisher
PR&D - Public Relations for Research & Education
Campus Vienna Biocenter 2
1030 Vienna
Austria
T +43 / 1 / 505 70 44

www.prd.at

Copyright © Austrian Science Fund

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Triboelectric Nanogenerators Boost Mass Spectrometry Performance March 1st, 2017

Biosensors: Distance makes the signal grow stronger March 1st, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Bioinspired process makes materials light, robust, programmable at nano- to macro-scale: Ultralight web of silk nano fibers withstands load 4,000 times its weight February 28th, 2017

Thin films

Dual-function nanorod LEDs could make multifunctional displays February 11th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

New material with ferroelectricity and ferromagnetism may lead to better computer memory December 21st, 2016

ANU invention to inspire new night-vision specs December 7th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Triboelectric Nanogenerators Boost Mass Spectrometry Performance March 1st, 2017

Bioinspired process makes materials light, robust, programmable at nano- to macro-scale: Ultralight web of silk nano fibers withstands load 4,000 times its weight February 28th, 2017

Nano 'sandwich' offers unique properties: Rice University researchers simulate two-dimensional hybrids for optoelectronics February 27th, 2017

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Possible Futures

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Bioinspired process makes materials light, robust, programmable at nano- to macro-scale: Ultralight web of silk nano fibers withstands load 4,000 times its weight February 28th, 2017

Nano 'sandwich' offers unique properties: Rice University researchers simulate two-dimensional hybrids for optoelectronics February 27th, 2017

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Chip Technology

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Nano 'sandwich' offers unique properties: Rice University researchers simulate two-dimensional hybrids for optoelectronics February 27th, 2017

Dream Chip Technologies Presents First 22nm FD-SOI Silicon of New Automotive Driver Assistance SoC: Advanced driver assistance system (ADAS) computer vision SoC developed for European THINGS2DO project with working first silicon fabricated on GLOBALFOUNDRIES’ 22nm FD-SOI Platfor February 27th, 2017

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

Nanoelectronics

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Announcements

Triboelectric Nanogenerators Boost Mass Spectrometry Performance March 1st, 2017

Biosensors: Distance makes the signal grow stronger March 1st, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Bioinspired process makes materials light, robust, programmable at nano- to macro-scale: Ultralight web of silk nano fibers withstands load 4,000 times its weight February 28th, 2017

Tools

NovAliX Turns to High-Resolution Cryo-Transmission Electron Microscopy for Pre-Clinical Drug Discovery Research: Thermo Fisher Scientific’s Cryo-TEM provides critical information for small molecule and biologic drug discovery February 28th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Solar/Photovoltaic

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Material can turn sunlight, heat and movement into electricity -- all at once: Extracting energy from multiple sources could help power wearable technology February 9th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project