Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Quantum Computer Chips Now One Step Closer To Reality

Paul Berger
Paul Berger

Abstract:
In the quest for smaller, faster computer chips, researchers are increasingly turning to quantum mechanics -- the exotic physics of the small.

Quantum Computer Chips Now One Step Closer To Reality

Columbus, OH | Posted on October 16th, 2009

The problem: the manufacturing techniques required to make quantum devices have been equally exotic.

That is, until now.

Researchers at Ohio State University have discovered a way to make quantum devices using technology common to the chip-making industry today.

This work might one day enable faster, low-power computer chips. It could also lead to high-resolution cameras for security and public safety, and cameras that provide clear vision through bad weather.

Paul Berger, professor of electrical and computer engineering and professor of physics at Ohio State University, and his colleagues report their findings in an upcoming issue of IEEE Electron Device Letters.

The team fabricated a device called a tunneling diode using the most common chip-making technique, called chemical vapor deposition.

"We wanted to do this using only the tools found in the typical chip-makers toolbox," Berger said. "Here we have a technique that manufacturers could potentially use to fabricate quantum devices directly on a silicon chip, side-by-side with their regular circuits and switches."

The quantum device in question is a resonant interband tunneling diode (RITD) -- a device that enables large amounts of current to be regulated through a circuit, but at very low voltages. That means that such devices run on very little power.

RITDs have been difficult to manufacture because they contain dopants -- chemical elements -- that don't easily fit within a silicon crystal.

Atoms of the RITD dopants antimony or phosphorus, for example, are large compared to atoms of silicon. Because they don't fit into the natural openings inside a silicon crystal, the dopants tend to collect on the surface of a chip.

"It's like when you're playing Tetris and you have a big block raining down, and only a small square to fit it in. The block has to sit on top," Berger said. "When you're building up layers of silicon, these dopants don't readily fit in. Eventually, they clump together on top of the chip."

In the past, researchers have tried adding the dopants while growing the silicon wafer one crystal layer at a time -- using a slow and expensive process called molecular beam epitaxy, a method which is challenging for high-volume manufacturing. That process also creates too many defects within the silicon.

Berger discovered that RITD dopants could be added during chemical vapor deposition, in which a gas carries the chemical elements to the surface of a wafer many layers at a time. The key was determining the right reactor conditions to deliver the dopants to the silicon, he found.

"One key is hydrogen," he said. "It binds to the silicon surface and keeps the dopants from clumping. So you don't have to grow chips at 320 degrees Celsius [approximately 600 degrees Fahrenheit] like you do when using molecular beam epitaxy. You can actually grow them at a higher temperature like 600 degrees Celsius [more than 1100 degrees Fahrenheit] at a lower cost, and with fewer crystal defects."

Tunneling diodes are so named because they exploit a quantum mechanical effect known as tunneling, which lets electrons pass through thin barriers unhindered.

In theory, interband tunneling diodes could form very dense, very efficient micro-circuits in computer chips. A large amount of data could be stored in a small area on a chip with very little energy required.

Researchers judge the usefulness of tunneling diodes by the abrupt change in the current densities they carry, a characteristic known as "peak-to-valley ratio." Different ratios are appropriate for different kinds of devices. Logic circuits such as those on a computer chip are best suited by a ratio of about 2.

The RITDs that Berger's team fabricated had a ratio of 1.85. "We're close, and I'm sure we can do better," he said.

He envisions his RITDs being used for ultra-low-power computer chips operating with small voltages and producing less wasted heat.

"Chip makers today are having a great difficulty boosting performance in each generation, so they pack chips with more and more circuitry, and end up generating a lot of heat," Berger said. "That's why a laptop computer is often too hot to actually sit atop your lap. Soon, their heat output will rival that of a nuclear reactor per unit volume."

"That's why moving to quantum devices will be a game-changer."

RITDs could form high-resolution detectors for imaging devices called focal plane arrays. These arrays operate at wavelengths beyond the human eye and can permit detection of concealed weapons and improvised explosive devices. They can also provide vision through rain, snow, fog, and even mild dust storms, for improved airplane and automobile safety, Berger said. Medical imaging of cancerous tumors is another potential application.

His coauthors on the paper included Si-Young Park, and R. Anisha, both doctoral students in electrical engineering at Ohio State; and Roger Loo, Ngoc Duy Nguyen, Shotaro Takeuchi, and Matty Caymax, all of IMEC, an industrial research center in Belgium.

This work was partially supported by the National Science Foundation.

####

About Ohio State University
The Ohio State University (OSU) is a public research university located in Columbus, Ohio. It was founded in 1870 as a land-grant university and is currently the largest single-campus university in the United States. Ohio State is currently ranked by U.S. News & World Report as the best public university in Ohio, among the top 150 universities in the world, among the top 60 universities in the United States, and among the top 20 public universities in the United States. Ohio State has been officially designated as the flagship institution of the state's public system of higher education by the newly centralized University System of Ohio.

From Wikipedia, the free encyclopedia

For more information, please click here

Contacts:
Paul R. Berger
(614) 247-6235


Written by Pam Frost Gorder
(614) 292-9475

Copyright © Ohio State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

NUS engineers develop low-cost, flexible terahertz radiation source for fast, non-invasive screening: Novel invention presents promising applications in spectroscopy, safety surveillance, cancer diagnosis, imaging and communication February 1st, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Possible Futures

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Chip Technology

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Quantum Computing

Sorting machine for atoms:Researchers at the University of Bonn clear a further hurdle on the path to creating quantum computers February 10th, 2017

First ever blueprint unveiled to construct a large scale quantum computer February 3rd, 2017

Chiral quantum optics: A new research field with bright perspectives January 31st, 2017

Scientists unveil new form of matter: Time crystals: Physicists repeatedly tweaked a group of ions to create first example of a non-equilibrium material January 27th, 2017

Nanoelectronics

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

1,000 times more efficient nano-LED opens door to faster microchips February 5th, 2017

Announcements

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

Homeland Security

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

Nanobionic spinach plants can detect explosives: After sensing dangerous chemicals, the carbon-nanotube-enhanced plants send an alert November 2nd, 2016

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Military

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Meta-lenses bring benchtop performance to small, hand-held spectrometer: Game-changing nanostructure-based lenses allow smaller devices, increased functionality February 9th, 2017

Quantum nanoscience

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Quantum simulation technique yields topological soliton state in SSH model January 3rd, 2017

Diamonds are technologists' best friends: Researchers from the Lomonosov Moscow State University have grown needle- and thread-like diamonds and studied their useful properties December 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project