Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Growth Spurts: Berkeley Lab Researchers Record First Real-Time Direct Observations of Nanocrystal Growth in Solution

Haimei Zheng is a chemist in the research group of Paul Alivisatos who was the lead author on a Science paper that reports the first ever direct observations in real-time of the growth of single nanocrystals in solution. (Photo by Majed Abolfazli)
Haimei Zheng is a chemist in the research group of Paul Alivisatos who was the lead author on a Science paper that reports the first ever direct observations in real-time of the growth of single nanocrystals in solution. (Photo by Majed Abolfazli)

Abstract:
The veil is being lifted from the once unseen world of molecular activity. Not so long ago only the final products were visible and scientists were forced to gauge the processes behind those products by ensemble averages of many molecules.

Growth Spurts: Berkeley Lab Researchers Record First Real-Time Direct Observations of Nanocrystal Growth in Solution

Berkeley, CA | Posted on August 11th, 2009

The limitations of that approach have become clear with the advent of technologies that allow for the observation and manipulation of single molecules. A prime example is the recent first ever direct observations in real-time of the growth of single nanocrystals in solution, which revealed that much of what we thought we knew is wrong.

Interim Berkeley Lab Director Paul Alivisatos and Ulrich Dahmen, director of Berkeley Lab's National Center for Electron Microscopy (NCEM), led a team of experts in nanocrystal growth and electron microscopy who combined their skills to observe the dynamic growth of colloidal platinum nanocrystals in solution with subnanometer resolution. Their results showed that while some crystals in solution grow steadily in size via classical nucleation and aggregation - meaning molecules collide and join together - others grow in fits and spurts, driven by "coalescence events," in which small crystals randomly collide and fuse together into larger crystals. Despite their distinctly different growth trajectories, these two processes ultimately yield a nearly monodisperse distribution of nanocrystals, meaning the crystals are all approximately the same size and shape.

"Coalescence events have been previously observed in flask synthesis of colloidal nanocrystals and has been considered detrimental for achieving monodisperse colloidal nanocrystals," says Haimei Zheng, a chemist in Alivisatos' research group, who was the lead author on a paper that reported these results in the journal Science. "In our study, we found that coalescence events are frequently involved in the early stage of nanocrystal growth and yet monodisperse nanocrystals are still formed."

Says Alivisatos, a chemist who holds joint appointments with Berkeley Lab and the University of California at Berkeley where he is the Larry and Diane Bock professor of Nanotechnology, "This direct observation of nanocrystal growth trajectories revealed a set of pathways more complex than those previously envisioned and enables us to re-think the nanocrystal growth mechanism with an eye towards more controlled synthesis."

The Science paper was titled: "Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories." Co-authoring this paper with Zheng, Alivisatos and Dahmen were Rachel Smith, Young-wook Jun and Christian Kisielowski.

Nanocrystals are projected to play important roles in a wide-ranging number of technologies including solar and fuel cell, catalysis, electronics and photonics, medicine, and imaging and sensing. The key to success will be the ability to synthesis nanocrystals with desired physical properties. This will require a much better understanding of colloidal nanocrystal growth mechanisms. While the past two decades have seen tremendous advances in the synthesis of semiconductor, metal and dielectric nanocrystals, these advances have generally been realized through trial and error chemistry. A much more directed and controlled approach to nanocrystal synthesis is needed.

A new technique known as "liquid cell in situ transmission electron microscopy," in which the powerful resolution capabilities of a transmission electron microscope (TEM) are brought to bear on a liquid cell that allows liquids to be observed inside a vacuum, enables the visualization of single nanoparticles in solution. The Berkeley researchers deployed this technique on NCEM's JEOL 3010 In-Situ microscope. Utilizing an electron beam operating at 300 kilovolts of energy, the JEOL 3010 provides outstanding specimen penetration and spatial resolution of about 8 angstroms through the thick liquid cell sample.

"The JEOL 3010 In-Situ Microscope is our best machine for imaging dynamic events, and at 300kV the electron beam has enough penetrating power to maintain high resolution, even when looking through a liquid confined between two thin solid windows," says NCEM director Dahmen. "Our resolution is significantly higher than any previous studies of this nature, which made it possible for us to measure the movement and growth of individual colloidal particles only a few nanometers in size."

Zheng, Dahmen, Alivisatos and their colleagues used the JEOL 3010 and liquid cells microfabricated from a pair of 100-micron-thick silicon wafers with 20 nanometer thick silicon nitride membrane windows to image the growth trajectories of platinum nanocrystals in solution. Platinum nanocrystals are an ideal system for such studies because their high electron contrast allows liquid-cell TEM imaging of individual particles. The JEOL 3010's electron beam was used to both trigger nucleation and drive crystal growth through reduction of the platinum cations.

"Video-rate acquisition allowed us to track nanocrystal growth trajectories from frame-to-frame," says Zheng. "This allowed us to observe that each nanocrystal can either grow steadily through the addition of monomers from solution or by merging with another nanocrystal in random coalescence events."

Zheng says it has been assumed that coalescence events would result in some crystals being much larger than others, a bad thing in that the physical properties of nanocrystals are so dependent upon size and shape that for many applications it is critical that monodispersed nanocrystals be produced during synthesis. Consequently, strategies such as the use of surfactants to coat nanocrystal surfaces have been adopted to avoid coalescence events.

"Our observations provide invaluable direct information on how nanocrystals grow and indicate how we might directly control nanocrystal synthesis for tailored properties," says Zheng. "Also, our in situ liquid cell TEM technique can be applied to other areas of research such as soft matter imaging and nanoparticle catalysis, and offers great potential for addressing many fundamental issues in materials science, chemistry and other fields of science."

Says Dahmen, "From a microscopist's point of view, the ability to observe nanoparticles in liquid solution opens new opportunities in an area that has traditionally been off-limits because electron microscopes require vacuum conditions. We can now see directly what before could only be surmised from the statistical behavior of the ensemble. It's like understanding traffic by watching individual cars instead of listening to the traffic report."

####

About Berkeley Lab
Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research for DOE’s Office of Science and is managed by the University of California. Visit our Website at www.lbl.gov/

NCEM is a U.S. Department of Energy national user facility that is hosted at Berkeley Lab. Established in 1983, it stands today as one of the world’s foremost centers for electron microscopy and microcharacterization.

For more information, please click here

Contacts:
Lynn Yarris
(510) 486-5375

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Sensors

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Tip-assisted chemistry enables chemical reactions at femtoliter scale November 16th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Nanoelectronics

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

Announcements

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Tools

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Controlled electron pulses November 30th, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

Energy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

Fuel Cells

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Water vapor sets some oxides aflutter: Newly discovered phenomenon could affect materials in batteries and water-splitting devices October 3rd, 2016

Carbon-coated iron catalyst structure could lead to more-active fuel cells September 15th, 2016

Imperial College use Kleindiek micromanipulators in their research into electrochemical energy devices September 6th, 2016

Nanobiotechnology

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Nanobiotix Provides Update on Global Development of Lead Product NBTXR3: Seven clinical trials across the world: More than 2/3 of STS patients recruited in the “act.in.sarc” Phase II/III trial: Phase I/II prostate cancer trial now recruiting in the U.S. November 28th, 2016

Photonics/Optics/Lasers

ANU invention to inspire new night-vision specs December 7th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Controlled electron pulses November 30th, 2016

New method for analyzing crystal structure: Exotic materials called photonic crystals reveal their internal characteristics with new method November 30th, 2016

Solar/Photovoltaic

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project