Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Growth Spurts: Berkeley Lab Researchers Record First Real-Time Direct Observations of Nanocrystal Growth in Solution

Haimei Zheng is a chemist in the research group of Paul Alivisatos who was the lead author on a Science paper that reports the first ever direct observations in real-time of the growth of single nanocrystals in solution. (Photo by Majed Abolfazli)
Haimei Zheng is a chemist in the research group of Paul Alivisatos who was the lead author on a Science paper that reports the first ever direct observations in real-time of the growth of single nanocrystals in solution. (Photo by Majed Abolfazli)

Abstract:
The veil is being lifted from the once unseen world of molecular activity. Not so long ago only the final products were visible and scientists were forced to gauge the processes behind those products by ensemble averages of many molecules.

Growth Spurts: Berkeley Lab Researchers Record First Real-Time Direct Observations of Nanocrystal Growth in Solution

Berkeley, CA | Posted on August 11th, 2009

The limitations of that approach have become clear with the advent of technologies that allow for the observation and manipulation of single molecules. A prime example is the recent first ever direct observations in real-time of the growth of single nanocrystals in solution, which revealed that much of what we thought we knew is wrong.

Interim Berkeley Lab Director Paul Alivisatos and Ulrich Dahmen, director of Berkeley Lab's National Center for Electron Microscopy (NCEM), led a team of experts in nanocrystal growth and electron microscopy who combined their skills to observe the dynamic growth of colloidal platinum nanocrystals in solution with subnanometer resolution. Their results showed that while some crystals in solution grow steadily in size via classical nucleation and aggregation - meaning molecules collide and join together - others grow in fits and spurts, driven by "coalescence events," in which small crystals randomly collide and fuse together into larger crystals. Despite their distinctly different growth trajectories, these two processes ultimately yield a nearly monodisperse distribution of nanocrystals, meaning the crystals are all approximately the same size and shape.

"Coalescence events have been previously observed in flask synthesis of colloidal nanocrystals and has been considered detrimental for achieving monodisperse colloidal nanocrystals," says Haimei Zheng, a chemist in Alivisatos' research group, who was the lead author on a paper that reported these results in the journal Science. "In our study, we found that coalescence events are frequently involved in the early stage of nanocrystal growth and yet monodisperse nanocrystals are still formed."

Says Alivisatos, a chemist who holds joint appointments with Berkeley Lab and the University of California at Berkeley where he is the Larry and Diane Bock professor of Nanotechnology, "This direct observation of nanocrystal growth trajectories revealed a set of pathways more complex than those previously envisioned and enables us to re-think the nanocrystal growth mechanism with an eye towards more controlled synthesis."

The Science paper was titled: "Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories." Co-authoring this paper with Zheng, Alivisatos and Dahmen were Rachel Smith, Young-wook Jun and Christian Kisielowski.

Nanocrystals are projected to play important roles in a wide-ranging number of technologies including solar and fuel cell, catalysis, electronics and photonics, medicine, and imaging and sensing. The key to success will be the ability to synthesis nanocrystals with desired physical properties. This will require a much better understanding of colloidal nanocrystal growth mechanisms. While the past two decades have seen tremendous advances in the synthesis of semiconductor, metal and dielectric nanocrystals, these advances have generally been realized through trial and error chemistry. A much more directed and controlled approach to nanocrystal synthesis is needed.

A new technique known as "liquid cell in situ transmission electron microscopy," in which the powerful resolution capabilities of a transmission electron microscope (TEM) are brought to bear on a liquid cell that allows liquids to be observed inside a vacuum, enables the visualization of single nanoparticles in solution. The Berkeley researchers deployed this technique on NCEM's JEOL 3010 In-Situ microscope. Utilizing an electron beam operating at 300 kilovolts of energy, the JEOL 3010 provides outstanding specimen penetration and spatial resolution of about 8 angstroms through the thick liquid cell sample.

"The JEOL 3010 In-Situ Microscope is our best machine for imaging dynamic events, and at 300kV the electron beam has enough penetrating power to maintain high resolution, even when looking through a liquid confined between two thin solid windows," says NCEM director Dahmen. "Our resolution is significantly higher than any previous studies of this nature, which made it possible for us to measure the movement and growth of individual colloidal particles only a few nanometers in size."

Zheng, Dahmen, Alivisatos and their colleagues used the JEOL 3010 and liquid cells microfabricated from a pair of 100-micron-thick silicon wafers with 20 nanometer thick silicon nitride membrane windows to image the growth trajectories of platinum nanocrystals in solution. Platinum nanocrystals are an ideal system for such studies because their high electron contrast allows liquid-cell TEM imaging of individual particles. The JEOL 3010's electron beam was used to both trigger nucleation and drive crystal growth through reduction of the platinum cations.

"Video-rate acquisition allowed us to track nanocrystal growth trajectories from frame-to-frame," says Zheng. "This allowed us to observe that each nanocrystal can either grow steadily through the addition of monomers from solution or by merging with another nanocrystal in random coalescence events."

Zheng says it has been assumed that coalescence events would result in some crystals being much larger than others, a bad thing in that the physical properties of nanocrystals are so dependent upon size and shape that for many applications it is critical that monodispersed nanocrystals be produced during synthesis. Consequently, strategies such as the use of surfactants to coat nanocrystal surfaces have been adopted to avoid coalescence events.

"Our observations provide invaluable direct information on how nanocrystals grow and indicate how we might directly control nanocrystal synthesis for tailored properties," says Zheng. "Also, our in situ liquid cell TEM technique can be applied to other areas of research such as soft matter imaging and nanoparticle catalysis, and offers great potential for addressing many fundamental issues in materials science, chemistry and other fields of science."

Says Dahmen, "From a microscopist's point of view, the ability to observe nanoparticles in liquid solution opens new opportunities in an area that has traditionally been off-limits because electron microscopes require vacuum conditions. We can now see directly what before could only be surmised from the statistical behavior of the ensemble. It's like understanding traffic by watching individual cars instead of listening to the traffic report."

####

About Berkeley Lab
Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research for DOE’s Office of Science and is managed by the University of California. Visit our Website at www.lbl.gov/

NCEM is a U.S. Department of Energy national user facility that is hosted at Berkeley Lab. Established in 1983, it stands today as one of the world’s foremost centers for electron microscopy and microcharacterization.

For more information, please click here

Contacts:
Lynn Yarris
(510) 486-5375

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Nanomedicine

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Iranian Scientists Apply Nanotechnology to Produce Surgery Suture October 23rd, 2014

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

Sopping up proteins with thermosponges: Researchers develop novel nanoparticle platform that proves effective in delivering protein-based drugs October 22nd, 2014

Sensors

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Journal Nanotechnology Progress International (JONPI), 2014, Volume 5, Issue 1, pp 1-24 October 22nd, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Graphenea opens US branch October 16th, 2014

Nanoelectronics

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Announcements

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Tools

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

National Synchrotron Light Source II Achieves 'First Light' October 23rd, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Energy

Nanoparticle technology triples the production of biogas October 23rd, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Fuel Cells

National Synchrotron Light Source II Achieves 'First Light' October 23rd, 2014

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven October 14th, 2014

Researchers Pump Up Oil Accumulation in Plant Leaves: Method could greatly boost energy content of crops grown for fuel October 8th, 2014

Platinum meets its match in quantum dots from coal: Rice University's cheap hybrid outperforms rare metal as fuel-cell catalyst October 1st, 2014

Nanobiotechnology

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

‘Designer’ nanodevice could improve treatment options for cancer sufferers October 22nd, 2014

Photonics/Optics/Lasers

Physicists build reversible laser tractor beam October 20th, 2014

Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014

New VDMA Association "Electronics, Micro and Nano Technologies" founded: Inaugural Meeting in Frankfurt/Main, Germany October 15th, 2014

Nanodevices for clinical diagnostic with potential for the international market: The development is based on optical principles and provides precision and allows saving vital time for the patient October 15th, 2014

Solar/Photovoltaic

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014

Dyesol Signs Letter of Intent with Tata Steel October 13th, 2014

DNA nano-foundries cast custom-shaped metal nanoparticles: DNA's programmable assembly is leveraged to form precise 3D nanomaterials for disease detection, environmental testing, electronics and beyond October 10th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE