Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NSF CAREER Award funds research on plastics that conduct electricity

These are some organized plastic materials under ultraviolet light. Because the materials absorb and brightly emit different colors of light, they are good candidates for displays and solar cells.
photo by: Clemson University
These are some organized plastic materials under ultraviolet light. Because the materials absorb and brightly emit different colors of light, they are good candidates for displays and solar cells. photo by: Clemson University

Abstract:
Clemson chemistry assistant professor Rhett Smith will receive $598,000 in a National Science Foundation CAREER Award to study a new class of materials that conduct electrical currents and can be used in thin, lightweight and flexible plastic electronic devices.

NSF CAREER Award funds research on plastics that conduct electricity

Clemson, SC | Posted on August 10th, 2009

"Some of the most exciting applications that are targeted are ultrathin, flexible displays like television and computer screens or displays in hand-held electronics," said Smith. "Another exciting application that could have an even bigger impact on society is thin-film solar cells to harvest energy from the sun as a renewable, potentially cheaper alternative to petroleum and coal-based energy resources."

Smith's research aims to reveal fundamental insight into how molecular-level organization of the material creates the plastic and dictates how it performs and how material combinations interact and conduct electrical currents.

The Faculty Early Career Development (CAREER) Program offers the National Science Foundation's most prestigious awards in support of the early career-development activities of teacher-scholars who most effectively integrate research and education within the context of the missions of their organizations. Smith's goal is to include a service-learning program, outreach and the development of polymer-science courses to increase awareness and participation in physical sciences. He also wants to mimic graduate-school research at the undergraduate level.

Smith received a bachelor's degree in 2000 from the University of Toledo and his Ph.D. in 2004 from Case Western Reserve University. He did his postdoctoral fellowship at the Massachusetts Institute of Technology before joining Clemson in 2006. His research focus includes the synthesis and applications of organic and inorganic materials for plastic electronic technologies.

####

About Clemson University
Clemson University offers countless opportunities for students, faculty and community members to participate in decades of tradition, improve quality of life for their surrounding communities and pursue academic challenges. Ranked as the 22nd best national public university by U.S.News and World Report, Clemson is a vibrant student-centered community that thrives on leadership, collaboration and a winning spirit — in academics, athletics and life.

To become one of the country’s top-tier research universities, Clemson University has combined the scientific and technological horsepower of a major research university with the academic and social environment of a small college. Just as founder Thomas Green Clemson intertwined his life with the state’s economic and educational development, this University’s students and faculty impact lives daily with their research and service.

For more information, please click here

Contacts:
Rhett Smith

864-656-6112

Susan Polowczuk
Media Relations

864-656-2063

Copyright © Clemson University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Display technology/LEDs/SS Lighting/OLEDs

Miniscule amounts of impurities in vacuum greatly affecting OLED lifetime December 30th, 2016

Trace metal recombination centers kill LED efficiency: UCSB researchers warn that trace amounts of transition metal impurities act as recombination centers in gallium nitride semiconductors November 3rd, 2016

Diamond nanothread: Versatile new material could prove priceless for manufacturing: Would you dress in diamond nanothreads? It's not as far-fetched as you might think November 3rd, 2016

Thin films

New material with ferroelectricity and ferromagnetism may lead to better computer memory December 21st, 2016

ANU invention to inspire new night-vision specs December 7th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

Deciphering the beetle exoskeleton with nanomechanics: Understanding exoskeletons could lead to new, improved artificial materials January 12th, 2017

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

Chip Technology

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

NIST physicists 'squeeze' light to cool microscopic drum below quantum limit January 12th, 2017

Nanoelectronics

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Fast track control accelerates switching of quantum bits December 16th, 2016

GLOBALFOUNDRIES Demonstrates Industry-Leading 56Gbps Long-Reach SerDes on Advanced 14nm FinFET Process Technology: Proven ASIC IP solution will enable significant performance and power efficiency improvements for next-generation high-speed applications December 13th, 2016

Announcements

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Environment

Investigating the impact of natural and manmade nanomaterials on living things: Center for Environmental Implications of Nanotechnology develops tools to assess current and future risk January 9th, 2017

PCATDES Starts Field Testing of Photocatalytic Reactors in South East Asia December 28th, 2016

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Carbon dots dash toward 'green' recycling role: Rice scientists, colleagues use doped graphene quantum dots to reduce carbon dioxide to fuel December 18th, 2016

Energy

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Going green with nanotechnology December 21st, 2016

Solar/Photovoltaic

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

Going green with nanotechnology December 21st, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project