Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UC Riverside Physicists to Study Attractive and Repulsive Forces Crucial in Designing Micro- and Nano-Machines

Measuring only around one tenth of a millimeter, the tiny ball seen in this image is pulled toward a smooth plate (unseen but positioned above the ball in this configuration), in response to the energy fluctuations in the vacuum of empty space. The attraction between the ball and the plate is the Casimir effect. Image credit: U. Mohideen, UC Riverside.
Measuring only around one tenth of a millimeter, the tiny ball seen in this image is pulled toward a smooth plate (unseen but positioned above the ball in this configuration), in response to the energy fluctuations in the vacuum of empty space. The attraction between the ball and the plate is the Casimir effect. Image credit: U. Mohideen, UC Riverside.

Abstract:
Umar Mohideen and Roya Zandi will conduct laboratory experiments and theoretical research aimed at reducing the Casimir force between objects; new book published on the force

UC Riverside Physicists to Study Attractive and Repulsive Forces Crucial in Designing Micro- and Nano-Machines

Riverside, CA | Posted on August 7th, 2009

The Casimir force, also known as the Casimir effect, is typified by the small attractive force that acts between two close parallel uncharged conducting plates. Today, this force has become an interdisciplinary subject of study, playing an important role in condensed matter physics, quantum field theory, atomic and molecular physics, gravitation and cosmology, and mathematical physics. Most recently the Casimir force has been applied to nanotechnology.

Now, to study this force, UC Riverside physicists have received funding of $1.6 million for two years from the Defense Advanced Research Projects Agency (DARPA), the central research and development office for the U.S. Department of Defense, through the Department of the Navy, Space and Naval Warfare Systems Command (SPAWAR).

Grant recipients, Umar Mohideen and Roya Zandi of the Department of Physics and Astronomy, will conduct experimental and theoretical research on ways to minimize the attractive, or enhance the repulsive, Casimir force between objects—a necessary step in designing extremely small machines. Such machines could have useful applications in fields such as electronics and medicine.

In the typical geometry of two close parallel uncharged conducting plates (or a sphere and a plate), the Casimir force is attractive. But in other situations, the force can be repulsive, depending on the materials involved or their configuration.

May the force be no hindrance

Today's advances in nanofabrication include the manufacture of micro- and nano-machines with moving parts separated by distances less than a micron (a micron is a millionth of a meter; a single strand of hair is approximately 100 microns). Because the distances are extremely small, the Casimir force needs to be considered in the design and function of the micro/nano-machines for efficient operation.

"The Casimir force, which is usually attractive, is also large at short separation distances between objects," explained Mohideen, a professor of physics and the principal investigator of the grant. "It severely limits and constrains the easy and efficient functioning of nano- and micro-machines. To allow more novel designs of micro-machines, engineers will first need to decrease the Casimir force. One approach we will use in the lab is to use different material coatings to substantially reduce the Casimir force. Another approach is to use specialized coatings to bring about a repulsive Casimir force."

Joining forces for the project

Mohideen is in charge of the experimental section of the research. Zandi, the co-principal investigator of the grant, will be joined by Mehran Kardar, a professor of physics at the Massachusetts Institute of Technology (MIT), and Thorsten Emig, a physicist at the University of Cologne, Germany, in overseeing the theoretical section of the research. Giuseppe Bimonte, a physicist who will visit UCR from the Università di Napoli Federico II, Italy, also will contribute to the theoretical research. They will be joined by four postdoctoral researchers at UCR and one student at MIT. All experiments will be conducted at UCR.

In book form the force

Mohideen has coauthored a book on the Casimir force along with colleagues at North-West Technical University, St. Petersburg, Russia; the University of Leipzig, Germany; and "Scientific Instruments," Moscow, Russia.

Titled Advances in the Casimir Effect, the book is part of the "International Series of Monographs on Physics," a very selective publication list from Oxford University Press.

"The field has undergone an extraordinary phase of growth in the last decade, with many ideas initiated by the co-authors," Mohideen said. "By summarizing all the recent developments, this book will serve as a launching pad for the anticipated rapid growth of the field in the future."

He and his fellow-coauthors took two and a half years to write the book of approximately 750 pages. The book covers a wide range of diverse topics as well as many subdisciplines of physics, for example, quantum field theory, condensed matter physics, atomic and molecular physics, gravitation and cosmology, mathematical physics and nanotechnology.

"The applications of the Casimir force in nanotechnology are not covered in the existing books because these books were published before the technological relevance was appreciated," Mohideen said.

Intended for all physicists working on different manifestations of vacuum oscillations, as well as applied physicists, the book can be used, too, by advanced undergraduate and graduate students who are beginning work on van der Waals forces (which act between molecules), the Casimir force or related subjects.

"A unique feature of our book is that it presents both experiment and theory, including their mutual influence," Mohideen said.

####

About University of California, Riverside
The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 17,000 is expected to grow to 21,000 students by 2020. The campus is planning a medical school and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion. To learn more, visit www.ucr.edu or call (951) UCR-NEWS.

For more information, please click here

Contacts:
Iqbal Pittalwala
Tel: (951) 827-6050


Media Relations
900 University Avenue
University Village 204B
Riverside, CA 92521

Tel: (951) 827-6397 (951) UCR-NEWS
Fax: (951) 827-5008

Copyright © University of California, Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Possible Futures

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Molecular Machines

Legions of nanorobots target cancerous tumors with precision: Administering anti-cancer drugs redefined August 16th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

Pushing a single-molecule switch: An international team of researchers from Donostia International Physics Center, Fritz-Haber Institute of the Max Planck Society, University of Liverpool, and the Polish Academy of Sciences has shown a new way to operate a single-molecule switch July 19th, 2016

Researchers harness DNA as the engine of super-efficient nanomachine: New platform detects traces of everything from bacteria to viruses, cocaine and metals July 10th, 2016

Nanomedicine

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Nanoelectronics

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Military

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Curbing the life-long effects of traumatic brain injury August 19th, 2016

Lab team spins ginger into nanoparticles to heal inflammatory bowel disease August 19th, 2016

Nanobiotechnology

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic