Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Smaller is Better as UCR Enhances its Ability to Nanoscale

Cengiz Ozkan, professor of mechanical engineering.
Cengiz Ozkan, professor of mechanical engineering.

Abstract:
New reactor installed at Bourns College of Engineering sparks the beginning of a new nanofabrication research center.

Smaller is Better as UCR Enhances its Ability to Nanoscale

Riverside, CA | Posted on August 6th, 2009

A dedicated laboratory space on the UCR campus moves Bourns College of Engineering another step closer to a more comprehensive nanoengineering center. The space at Pierce Hall is now home to an advanced metal, organic, chemical, vapor, deposition (MOCVD) reactor.

An MOCVD reactor is used to fabricate nanostructures including nanowires (structures that have a thickness or diameter constrained to tens of nanometers or less and an unconstrained length) and thin films having precisely controlled dimensions for applications in nanoelectronics and optoelectronics.

"The new facility will be used for research in nanowire fabrics, transistor arrays, solar cells and sensors, and will provide materials for many other nanoengineering applications," said Cengiz Ozkan, professor of mechanical engineering. "It's a very important addition to our arsenal of tools."

This technology will enable researchers to produce superior material quality and process efficiency.

"One area to benefit from the advanced technology will be the production of flexible, low-cost, high-performance solar cells composed of group III-V nanowires, which are expected to provide higher conversion efficiencies compared to thin film technologies," Ozkan said. "Nanowires having typical dimensions of 10-100 nm diameter and 1-5 micron length permit electrons and holes to be collected before they can recombine (loss) and maximize absorption. We are starting to do research on multisegment or heterojunction nanowire solar cells that can absorb a greater range of the light spectrum, compared to what you could achieve with conventional silicon based solar cells."

The vast range of applications including solar cells for automotive, household and military applications, and personal applications including mobile devices like cell phones and laptop computers, will greatly benefit from the new solar technologies.

This move will also expand collaboration outside the university. "It will bring more researchers together," Ozkan said. "We can offer more materials that will benefit all engineering disciplines as well as physics, chemistry, and biology."

This new nanofabrication tool adds to a variety of technologies available to Bourns researchers including molecular beam epitaxy (MBE), chemical vapor deposition (CVD) material growth facilities and micro-Raman characterization equipment. The next leap in nanotechnology at UCR is the 2010 completion of the $66 million Materials Science and Engineering Building, which includes a 20,000-square-foot clean-room facility.

####

About University of California, Riverside
The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 17,000 is expected to grow to 21,000 students by 2020. The campus is planning a medical school and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion. To learn more, visit www.ucr.edu or call (951) UCR-NEWS.

For more information, please click here

Contacts:
Media Relations
900 University Avenue
University Village 204B
Riverside, CA 92521
Tel: (951) 827-6397 (951) UCR-NEWS
Fax: (951) 827-5008

Copyright © University of California, Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Bourns College of Engineering

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project