Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Smaller is Better as UCR Enhances its Ability to Nanoscale

Cengiz Ozkan, professor of mechanical engineering.
Cengiz Ozkan, professor of mechanical engineering.

Abstract:
New reactor installed at Bourns College of Engineering sparks the beginning of a new nanofabrication research center.

Smaller is Better as UCR Enhances its Ability to Nanoscale

Riverside, CA | Posted on August 6th, 2009

A dedicated laboratory space on the UCR campus moves Bourns College of Engineering another step closer to a more comprehensive nanoengineering center. The space at Pierce Hall is now home to an advanced metal, organic, chemical, vapor, deposition (MOCVD) reactor.

An MOCVD reactor is used to fabricate nanostructures including nanowires (structures that have a thickness or diameter constrained to tens of nanometers or less and an unconstrained length) and thin films having precisely controlled dimensions for applications in nanoelectronics and optoelectronics.

"The new facility will be used for research in nanowire fabrics, transistor arrays, solar cells and sensors, and will provide materials for many other nanoengineering applications," said Cengiz Ozkan, professor of mechanical engineering. "It's a very important addition to our arsenal of tools."

This technology will enable researchers to produce superior material quality and process efficiency.

"One area to benefit from the advanced technology will be the production of flexible, low-cost, high-performance solar cells composed of group III-V nanowires, which are expected to provide higher conversion efficiencies compared to thin film technologies," Ozkan said. "Nanowires having typical dimensions of 10-100 nm diameter and 1-5 micron length permit electrons and holes to be collected before they can recombine (loss) and maximize absorption. We are starting to do research on multisegment or heterojunction nanowire solar cells that can absorb a greater range of the light spectrum, compared to what you could achieve with conventional silicon based solar cells."

The vast range of applications including solar cells for automotive, household and military applications, and personal applications including mobile devices like cell phones and laptop computers, will greatly benefit from the new solar technologies.

This move will also expand collaboration outside the university. "It will bring more researchers together," Ozkan said. "We can offer more materials that will benefit all engineering disciplines as well as physics, chemistry, and biology."

This new nanofabrication tool adds to a variety of technologies available to Bourns researchers including molecular beam epitaxy (MBE), chemical vapor deposition (CVD) material growth facilities and micro-Raman characterization equipment. The next leap in nanotechnology at UCR is the 2010 completion of the $66 million Materials Science and Engineering Building, which includes a 20,000-square-foot clean-room facility.

####

About University of California, Riverside
The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 17,000 is expected to grow to 21,000 students by 2020. The campus is planning a medical school and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion. To learn more, visit www.ucr.edu or call (951) UCR-NEWS.

For more information, please click here

Contacts:
Media Relations
900 University Avenue
University Village 204B
Riverside, CA 92521
Tel: (951) 827-6397 (951) UCR-NEWS
Fax: (951) 827-5008

Copyright © University of California, Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Bourns College of Engineering

Related News Press

News and information

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Laboratories

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Scientists uncover origin of high-temperature superconductivity in copper-oxide compound: Analysis of thousands of samples reveals that the compound becomes superconducting at an unusually high temperature because local electron pairs form a 'superfluid' that flows without resist August 19th, 2016

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

NREL technique leads to improved perovskite solar cells August 11th, 2016

Chip Technology

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

Sensors

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Perpetual 'ice water': Stable solid-liquid state revealed in nanoparticles: Gallium nanoparticles that are both solid and liquid are stable over a range of 1000 degrees Fahrenheit August 5th, 2016

Nanoelectronics

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Tools

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

University of Puerto Rico and NASA back in the news XEI reports August 23rd, 2016

Spider silk: Mother Nature's bio-superlens August 22nd, 2016

Solar/Photovoltaic

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

NREL technique leads to improved perovskite solar cells August 11th, 2016

Making a solar energy conversion breakthrough with help from a ferroelectrics pioneer: Philadelphia-based team shows how a ferroelectric insulator can surpass shockley-queisser limit August 9th, 2016

Tiny high-performance solar cells turn power generation sideways August 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic