Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > UCLA researchers develop new method for producing transparent conductors: Single-step process promises cheaper, more powerful electronic devices

Abstract:
Researchers at UCLA have developed a new method for producing a hybrid graphene-carbon nanotube, or G-CNT, for potential use as a transparent conductor in solar cells and consumer electronic devices. These G-CNTs could provide a cheaper and much more flexible alternative to materials currently used in these and similar applications.

UCLA researchers develop new method for producing transparent conductors: Single-step process promises cheaper, more powerful electronic devices

Los Angeles, CA | Posted on May 13th, 2009

Yang Yang, a professor of materials science and engineering at the UCLA Henry Samueli School of Engineering and Applied Science and a member of UCLA's California NanoSystems Institute (CNSI), and Richard Kaner, a UCLA professor of chemistry and biochemistry and a CNSI member, outline their new processing method in research published today in Nano Letters, a journal of the American Chemical Society.

Transparent conductors are an integral part of many electronic devices, including flat-panel televisions, plasma displays and touch panels, as well as solar cells. The current gold standard for transparent conductors is indium tin oxide (ITO), which has several limitations. ITO is expensive, both because of its production costs and a relative scarcity of indium, and it is rigid and fragile.

The G-CNT hybrid, the researchers say, provides an ideal high-performance alternative to ITO in electronics with moving parts. Graphene is an excellent electrical conductor, and carbon nanotubes are good candidates for transparent conductors because they provide conduction of electricity using very little material. Yang and Kaner's new single-step method for combining the two is easy, inexpensive, scalable and compatible with flexible applications. G-CNTs produced this way already provide comparable performance to current ITOs used in flexible applications.

The new method builds on Yang and Kaner's previous research, published online in November 2009, which introduced a method for producing graphene, a single layer of carbon atoms, by soaking graphite oxide in a hydrazine solution. The researchers have now found that placing both graphite oxide and carbon nanotubes in a hydrazine solution produces not only graphene but a hybrid layer of graphene and carbon nanotubes.

"To our knowledge this is the first report of dispersing CNTs in anhydrous hydrazine," Yang said. "This is important because our method does not require the use of surfactants, which have traditionally been used in these solution processes and can degrade intrinsic electronic and mechanical properties."

G-CNTs are also ideal candidates for use as electrodes in polymer solar cells, one of Yang's main research projects. One of the benefits of polymer, or plastic, solar cells is that plastic is flexible. But until an alternative to ITOs, which lose efficiency upon flexing, can be found, this potential cannot be exploited. G-CNTs retain efficiency when flexed and also are compatible with plastics. Flexible solar cells could be used in a variety of materials, including the drapes of homes.

"The potential of this material (G-CNT) is not limited to improvements in the physical arrangements of the components," said Vincent Tung, a doctoral student working jointly in Yang's and Kaner's labs and the first author of the study. "With further work, G-CNTs have the potential to provide the building blocks of tomorrow's optical electronics."

This research was partially supported by grants from the National Science Foundation and the Air Force Office of Scientific Research.

####

About UCLA
The California NanoSystems Institute at UCLA (CNSI) is an integrated research center operating jointly at UCLA and UC Santa Barbara whose mission is to foster interdisciplinary collaborations for discoveries in nanosystems and nanotechnology; train the next generation of scientists, educators and technology leaders; and facilitate partnerships with industry, fueling economic development and the social well-being of California, the United States and the world. The CNSI was established in 2000 with $100 million from the state of California and an additional $250 million in federal research grants and industry funding. At the institute, scientists in the areas of biology, chemistry, biochemistry, physics, mathematics, computational science and engineering are measuring, modifying and manipulating the building blocks of our world atoms and molecules. These scientists benefit from an integrated laboratory culture enabling them to conduct dynamic research at the nanoscale, leading to significant breakthroughs in the areas of health, energy, the environment and information technology.

For more information, please click here

Contacts:
Jennifer Marcus,
310-267-4839


Mike Rodewald,
310-267-5883

Copyright © UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Chip Technology

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Stanford team combines logic, memory to build a 'high-rise' chip: Today circuit cards are laid out like single-story towns; Futuristic architecture builds layers of logic and memory into skyscraper chips that would be smaller, faster, cheaper -- and taller December 15th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Nanotubes/Buckyballs

A sponge-like molecular cage for purification of fullerenes December 15th, 2014

'Trojan horse' proteins used to target hard-to-reach cancers: Scientists at Brunel University London have found a way of targeting hard-to-reach cancers and degenerative diseases using nanoparticles, but without causing the damaging side effects the treatment normally brings December 11th, 2014

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Green meets nano: Scientists at TU Darmstadt create multifunctional nanotubes using nontoxic materials December 3rd, 2014

Nanoelectronics

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Discoveries

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Announcements

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Energy

Lifeboat Foundation gives 2014 Guardian Award to Elon Musk December 16th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

New Technique Could Harvest More of the Sun's Energy December 9th, 2014

Solar/Photovoltaic

Lifeboat Foundation gives 2014 Guardian Award to Elon Musk December 16th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

New Technique Could Harvest More of the Sun's Energy December 9th, 2014

Light propagation in solar cells made visible December 5th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE