Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Molecular machines drive plasmonic nanoswitches

Abstract:
Plasmonics -- a possible replacement for current computing approaches -- may pave the way for the next generation of computers that operate faster and store more information than electronically-based systems and are smaller than optically-based systems, according to a Penn State engineer who has developed a plasmonic switch.

Molecular machines drive plasmonic nanoswitches

University Park, PA | Posted on February 11th, 2009

"If plasmonics are realized, the future will have circuits as small as the current electronic ones with a capacity a million times better," said Tony Jun Huang, James Henderson assistant professor of Engineering Science and Mechanics. "Plasmonics combines the speed and capacity of photonic -- light based -- circuits with the small size of electronic circuits."

Currently, electronic circuits can be made very small, but they are limited by their capacity and the speed that information can travel in the circuits. Optical circuits send information at the speed of light, but the size is large, limited by the light's wavelength. Plasmonics combines the best of electronic and optical circuits and can transmit electrons and light at the same time using the surface of the device.

Huang's team created a plasmonic switch from switchable bistable rotaxanes. Rotaxanes are complex molecules that consist of a dumbbell shape with a ring or rings encircling the shaft and are sometimes called molecular machines. The ring can either move from one end of the barbell to the other or rotate around the shaft. Changes in molecular shape are the basis of the plasmonic switch.

Computers, in their simplest form, are machines that can say yes or no multiple times to transfer information. The motion of a molecule can serve the same purpose as the on off switch on a light.

The researchers attached their molecular machines to gold-coated nanodiscs fabricated on glass. The machines were attached with disulfide functional groups. The dumbbell shaped molecules have two areas of the shaft primed with two different chemicals. The ring is initially drawn to circle at one primed area. When the chemical there is oxidized, the ring is repelled and moves to the other primed area, flipping the switch. The process is reversible, so the ring returns to its original state to switch on again later. When the molecule moves, it changes the surface plasmon resonance in that tiny area of the metal where it is attached. This change in resonance is what would send the signal on the circuit. The plasmonic switch that Huang and his team developed is not yet part of a circuit.

"Plasmonic circuits have not yet been achieved," said Huang. "In the past, the plasmonic devices made were all passive." These devices were used as light sources, lenses and waveguides

Huang's switches are activated by a chemical process, however, this is not the optimal choice for a working circuit.

"We believe that the chemically-driven redox process can be replaced with direct electrical or optical stimulation, a logical development that would establish a technological basis for the production of a new class of molecular-machine-based active plasmonic components for solid-state nanophotonic integrated circuits with the potential for low-energy and ultra small operations," the researchers state in a recent issue of Nano Letters.

In essence, plasmonic devices would allow computers to get faster and have more memory storage in smaller spaces. Storage of as much as 1,000 movies on a typical USB drive would be possible. Huang suggests that applications like YouTube, which are very popular but have terrible resolution, could become places to see high-resolution images.

"We are in the very beginning of this field," said Huang. "Creation of a plasmonic circuit is probably five years away."

Besides Huang, researchers on this project include Yue Bing Zheng and Bala Krishna Juluri, graduate students in Engineering Science and Mechanics; Lasse Jensen, professor of chemistry; Paul Weiss, distinguished professor of chemistry and physics, all at Penn State; Lei Fang, graduate student and J. Fraser Stoddart, professor, Northwestern University; Ying-Wei yang, postdoctoral fellow, University of California, Los Angeles and Amar H. Flood, professor, Indiana University. The U.S. Air Force Office of Scientific Research and the National Science Foundation supported this work.

####

For more information, please click here

Contacts:
A'ndrea Elyse Messer

814-865-9481

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Harris & Harris Group to Host Conference Call on Second-Quarter 2014 Financial Results on August 15, 2014 July 23rd, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Molecular Machines

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

University of Illinois researchers demonstrate novel, tunable nanoantennas July 14th, 2014

Ribosome Research in Atomic Detail Offers Potential Insights into Cancer, Anemia, Alzheimer’s: New movement during decoding occurs in humans, not in bacteria July 3rd, 2014

Nanoscale velcro used for molecule transport June 25th, 2014

Chip Technology

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Memory Technology

Rice's silicon oxide memories catch manufacturers' eye: Use of porous silicon oxide reduces forming voltage, improves manufacturability July 10th, 2014

University of Illinois study advances limits for ultrafast nano-devices July 10th, 2014

Leti to Present Technological Platforms Targeting Industry’s Needs for the Future at Semicon West Workshop: Presentation at STS Session to Focus on Leti Advanced Lithography Programs for 1x Nodes and on Silicon Photonics at TechXPot June 25th, 2014

6TH CEA-LETI WORKSHOP ON INNOVATIVE MEMORY TECHNOLOGIES includes invited talks by Infineon, IBM, Schlumberger, Thales, Cisco and STMicroelectronics: June 24 Event to Explore NVM Application Horizons from Automotive to Oil & Gas: Responses from Innovative Technologies & Design June 12th, 2014

Nanoelectronics

A Crystal Wedding in the Nanocosmos July 23rd, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Carbodeon enables 20 percent increase in polymer thermal filler conductivity with 0.03 wt.% nanodiamond additive at a lower cost than with traditional fillers: Improved materials and processes enable nanodiamond cost reductions of up to 70 percent for electronics and LED app July 9th, 2014

Discoveries

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Announcements

Harris & Harris Group to Host Conference Call on Second-Quarter 2014 Financial Results on August 15, 2014 July 23rd, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE