Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Molecular machines drive plasmonic nanoswitches

Abstract:
Plasmonics -- a possible replacement for current computing approaches -- may pave the way for the next generation of computers that operate faster and store more information than electronically-based systems and are smaller than optically-based systems, according to a Penn State engineer who has developed a plasmonic switch.

Molecular machines drive plasmonic nanoswitches

University Park, PA | Posted on February 11th, 2009

"If plasmonics are realized, the future will have circuits as small as the current electronic ones with a capacity a million times better," said Tony Jun Huang, James Henderson assistant professor of Engineering Science and Mechanics. "Plasmonics combines the speed and capacity of photonic -- light based -- circuits with the small size of electronic circuits."

Currently, electronic circuits can be made very small, but they are limited by their capacity and the speed that information can travel in the circuits. Optical circuits send information at the speed of light, but the size is large, limited by the light's wavelength. Plasmonics combines the best of electronic and optical circuits and can transmit electrons and light at the same time using the surface of the device.

Huang's team created a plasmonic switch from switchable bistable rotaxanes. Rotaxanes are complex molecules that consist of a dumbbell shape with a ring or rings encircling the shaft and are sometimes called molecular machines. The ring can either move from one end of the barbell to the other or rotate around the shaft. Changes in molecular shape are the basis of the plasmonic switch.

Computers, in their simplest form, are machines that can say yes or no multiple times to transfer information. The motion of a molecule can serve the same purpose as the on off switch on a light.

The researchers attached their molecular machines to gold-coated nanodiscs fabricated on glass. The machines were attached with disulfide functional groups. The dumbbell shaped molecules have two areas of the shaft primed with two different chemicals. The ring is initially drawn to circle at one primed area. When the chemical there is oxidized, the ring is repelled and moves to the other primed area, flipping the switch. The process is reversible, so the ring returns to its original state to switch on again later. When the molecule moves, it changes the surface plasmon resonance in that tiny area of the metal where it is attached. This change in resonance is what would send the signal on the circuit. The plasmonic switch that Huang and his team developed is not yet part of a circuit.

"Plasmonic circuits have not yet been achieved," said Huang. "In the past, the plasmonic devices made were all passive." These devices were used as light sources, lenses and waveguides

Huang's switches are activated by a chemical process, however, this is not the optimal choice for a working circuit.

"We believe that the chemically-driven redox process can be replaced with direct electrical or optical stimulation, a logical development that would establish a technological basis for the production of a new class of molecular-machine-based active plasmonic components for solid-state nanophotonic integrated circuits with the potential for low-energy and ultra small operations," the researchers state in a recent issue of Nano Letters.

In essence, plasmonic devices would allow computers to get faster and have more memory storage in smaller spaces. Storage of as much as 1,000 movies on a typical USB drive would be possible. Huang suggests that applications like YouTube, which are very popular but have terrible resolution, could become places to see high-resolution images.

"We are in the very beginning of this field," said Huang. "Creation of a plasmonic circuit is probably five years away."

Besides Huang, researchers on this project include Yue Bing Zheng and Bala Krishna Juluri, graduate students in Engineering Science and Mechanics; Lasse Jensen, professor of chemistry; Paul Weiss, distinguished professor of chemistry and physics, all at Penn State; Lei Fang, graduate student and J. Fraser Stoddart, professor, Northwestern University; Ying-Wei yang, postdoctoral fellow, University of California, Los Angeles and Amar H. Flood, professor, Indiana University. The U.S. Air Force Office of Scientific Research and the National Science Foundation supported this work.

####

For more information, please click here

Contacts:
A'ndrea Elyse Messer

814-865-9481

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

GLOBALFOUNDRIES and Catena Partner to Provide Next-Generation RF Connectivity Solutions for Growing Wireless Markets: Catena Wi-Fi and Bluetooth RF technologies available on GLOBALFOUNDRIES 28nm Super Low Power Process technology September 3rd, 2015

Making nanowires from protein and DNA September 3rd, 2015

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

Molecular Machines

Using DNA origami to build nanodevices of the future September 1st, 2015

Injectable electronics: New system holds promise for basic neuroscience, treatment of neuro-degenerative diseases June 8th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Chip Technology

GLOBALFOUNDRIES and Catena Partner to Provide Next-Generation RF Connectivity Solutions for Growing Wireless Markets: Catena Wi-Fi and Bluetooth RF technologies available on GLOBALFOUNDRIES 28nm Super Low Power Process technology September 3rd, 2015

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

Nanometrics to Participate in the Citi 2015 Global Technology Conference August 26th, 2015

Memory Technology

New material science research may advance tech tools August 31st, 2015

'Magic' sphere for information transfer: Professor at the Lomonosov Moscow State University made the «magic» sphere for information transfer August 24th, 2015

Superlattice design realizes elusive multiferroic properties: New design sandwiches a polar metallic oxide between an insulating material August 23rd, 2015

High-precision control of nanoparticles for digital applications August 19th, 2015

Nanoelectronics

Turning clothing into information displays September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

'Quantum dot' technology may help light the future August 19th, 2015

Discoveries

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

QEOS and GLOBALFOUNDRIES to Offer Industry’s First CMOS Platform for MillimeterWave Markets: GLOBALSOLUTIONSSM Partnership will enable next-generation wireless technologies for applications in IoT, 5G and automotive September 3rd, 2015

Making nanowires from protein and DNA September 3rd, 2015

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

Announcements

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

GLOBALFOUNDRIES and Catena Partner to Provide Next-Generation RF Connectivity Solutions for Growing Wireless Markets: Catena Wi-Fi and Bluetooth RF technologies available on GLOBALFOUNDRIES 28nm Super Low Power Process technology September 3rd, 2015

Making nanowires from protein and DNA September 3rd, 2015

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic