Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > USC researchers print dense lattice of transparent nanotube transistors on flexible base

See-through circuit makers: Hsaioh-Kang Chang, left, and Fumiaki Ishikawa, are pictured with their transparent, flexible transistor array.

Credit: USC Viterbi School of Engineering
See-through circuit makers: Hsaioh-Kang Chang, left, and Fumiaki Ishikawa, are pictured with their transparent, flexible transistor array.

Credit: USC Viterbi School of Engineering

Abstract:
Low-temperature process produces both n-type and p-type transistors; allows embedding of LEDs

USC researchers print dense lattice of transparent nanotube transistors on flexible base

Los Angeles, CA | Posted on December 16th, 2008

It's a clear, colorless disk about 5 inches in diameter that bends and twists like a playing card, with a lattice of more than 20,000 nanotube transistors capable of high-performance electronics printed upon it using a potentially inexpensive low-temperature process.

Its University of Southern California creators believe the prototype points the way to such long sought after applications as affordable "head-up" car windshield displays. The lattices could also be used to create cheap, ultra thin, low-power "e-paper" displays.

They might even be incorporated into fabric that would change color or pattern as desired for clothing or even wall covering, into nametags, signage and other applications.

A team at the USC Viterbi School of Engineering created the new device, described and illustrated in a just-published paper on "Transparent Electronics Based on Printed Aligned Nanotubes on Rigid and Flexible Structures" in the journal ACS Nano.

Graduate students Fumiaki Ishikawa and Hsiaoh-Kang Chang worked under Professor Chongwu Zhou of the School's Ming Hsieh Department of Electrical Engineering on the project, solving the problems of attaching dense matrices of carbon nanotubes not just to heat-resistant glass but also to flexible but highly heat-vulnerable transparent plastic substrates.

The researchers not only created printed circuit lattices of nanotube-based transistors to the transparent plastic but also additionally connected them to commercial gallium nitrate (GaN) light-emitting diodes, which change their luminosity by a factor of 1,000 as they are energized.

"Our results suggest that aligned nanotubes have great potential to work as building blocks for future transparent electronics," say the researchers.

The thin transparent thin-film transistor technology developed employs carbon nanotubes - tubes with walls one carbon atom thick - as the active channels for the circuits, controlled by iridium-tin oxide electrodes which function as sources, gates and drains.

Earlier attempts at transparent devices used other semiconductor materials with disappointing electronic results, enabling one kind of transistor (n-type); but not p-types; both types are needed for most applications.

The critical improvement in performance, according to the research, came from the ability to produce extremely dense, highly patterned lattices of nanotubes, rather than random tangles and clumps of the material. The Zhou lab has pioneered this technique over the past three years.

The paper contains a description of how the new devices are made.

"These nanotubes were first grown on quartz substrates and then transferred to glass or PET substrates with pre-patterned indium-tin oxide (ITO) gate electrodes, followed by patterning of transparent source and drain electrodes. In contrast to random networked nanotubes, the use of massively aligned nanotubes enabled the devices to exhibit high performance, including high mobility, good transparency, and mechanical flexibility.

"In addition, these aligned nanotube transistors are easy to fabricate and integrate, as compared to individual nanotube devices. The transfer printing process allowed the devices to be fabricated through low temperature process, which is particularly important for realizing transparent electronics on flexible substrates. … While large manufacturability must be addressed before practical applications are considered, our work has paved the way for using aligned nanotubes for high-performance transparent electronics "

Ishikawa and Chang are the principal authors of the paper. Viterbi School graduate students Koungmin Ryu, Pochiang Chen, Alexander Badmaev, Lewis Gomez De Arco, and Guozhen Shen also participated in the project. Zhou, an associate professor, holds the Viterbi School's Jack Munushian Early Career Chair.

The Focus Center Research Program (FCRP FENA) and the National Science Foundation supported the research. The original article can be read at: pubs.acs.org/doi/abs/10.1021/nn800434d

####

For more information, please click here

Contacts:
Eric Mankin

213-821-1887

Copyright © University of Southern California

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Display technology/LEDs/SS Lighting/OLEDs

Martini Tech Inc. becomes the exclusive distributor for Yoshioka Seiko Co. porous chucks for Europe and North America July 20th, 2014

Carbodeon enables 20 percent increase in polymer thermal filler conductivity with 0.03 wt.% nanodiamond additive at a lower cost than with traditional fillers: Improved materials and processes enable nanodiamond cost reductions of up to 70 percent for electronics and LED app July 9th, 2014

'Nano-pixels' promise thin, flexible, high resolution displays July 9th, 2014

Projecting a Three-Dimensional Future: TAU researchers develop holography technology that could change the way we view the world July 9th, 2014

Chip Technology

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Nanoelectronics

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Discoveries

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Announcements

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Printing/Lithography/Inkjet/Inks

Martini Tech Inc. becomes the exclusive distributor for Yoshioka Seiko Co. porous chucks for Europe and North America July 20th, 2014

University of Illinois researchers demonstrate novel, tunable nanoantennas July 14th, 2014

Haydale Announces Collaboration Agreement with Swansea University’s Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014

Leti to Present Technological Platforms Targeting Industry’s Needs for the Future at Semicon West Workshop: Presentation at STS Session to Focus on Leti Advanced Lithography Programs for 1x Nodes and on Silicon Photonics at TechXPot June 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE