Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > USC researchers print dense lattice of transparent nanotube transistors on flexible base

See-through circuit makers: Hsaioh-Kang Chang, left, and Fumiaki Ishikawa, are pictured with their transparent, flexible transistor array.

Credit: USC Viterbi School of Engineering
See-through circuit makers: Hsaioh-Kang Chang, left, and Fumiaki Ishikawa, are pictured with their transparent, flexible transistor array.

Credit: USC Viterbi School of Engineering

Abstract:
Low-temperature process produces both n-type and p-type transistors; allows embedding of LEDs

USC researchers print dense lattice of transparent nanotube transistors on flexible base

Los Angeles, CA | Posted on December 16th, 2008

It's a clear, colorless disk about 5 inches in diameter that bends and twists like a playing card, with a lattice of more than 20,000 nanotube transistors capable of high-performance electronics printed upon it using a potentially inexpensive low-temperature process.

Its University of Southern California creators believe the prototype points the way to such long sought after applications as affordable "head-up" car windshield displays. The lattices could also be used to create cheap, ultra thin, low-power "e-paper" displays.

They might even be incorporated into fabric that would change color or pattern as desired for clothing or even wall covering, into nametags, signage and other applications.

A team at the USC Viterbi School of Engineering created the new device, described and illustrated in a just-published paper on "Transparent Electronics Based on Printed Aligned Nanotubes on Rigid and Flexible Structures" in the journal ACS Nano.

Graduate students Fumiaki Ishikawa and Hsiaoh-Kang Chang worked under Professor Chongwu Zhou of the School's Ming Hsieh Department of Electrical Engineering on the project, solving the problems of attaching dense matrices of carbon nanotubes not just to heat-resistant glass but also to flexible but highly heat-vulnerable transparent plastic substrates.

The researchers not only created printed circuit lattices of nanotube-based transistors to the transparent plastic but also additionally connected them to commercial gallium nitrate (GaN) light-emitting diodes, which change their luminosity by a factor of 1,000 as they are energized.

"Our results suggest that aligned nanotubes have great potential to work as building blocks for future transparent electronics," say the researchers.

The thin transparent thin-film transistor technology developed employs carbon nanotubes - tubes with walls one carbon atom thick - as the active channels for the circuits, controlled by iridium-tin oxide electrodes which function as sources, gates and drains.

Earlier attempts at transparent devices used other semiconductor materials with disappointing electronic results, enabling one kind of transistor (n-type); but not p-types; both types are needed for most applications.

The critical improvement in performance, according to the research, came from the ability to produce extremely dense, highly patterned lattices of nanotubes, rather than random tangles and clumps of the material. The Zhou lab has pioneered this technique over the past three years.

The paper contains a description of how the new devices are made.

"These nanotubes were first grown on quartz substrates and then transferred to glass or PET substrates with pre-patterned indium-tin oxide (ITO) gate electrodes, followed by patterning of transparent source and drain electrodes. In contrast to random networked nanotubes, the use of massively aligned nanotubes enabled the devices to exhibit high performance, including high mobility, good transparency, and mechanical flexibility.

"In addition, these aligned nanotube transistors are easy to fabricate and integrate, as compared to individual nanotube devices. The transfer printing process allowed the devices to be fabricated through low temperature process, which is particularly important for realizing transparent electronics on flexible substrates. … While large manufacturability must be addressed before practical applications are considered, our work has paved the way for using aligned nanotubes for high-performance transparent electronics "

Ishikawa and Chang are the principal authors of the paper. Viterbi School graduate students Koungmin Ryu, Pochiang Chen, Alexander Badmaev, Lewis Gomez De Arco, and Guozhen Shen also participated in the project. Zhou, an associate professor, holds the Viterbi School's Jack Munushian Early Career Chair.

The Focus Center Research Program (FCRP FENA) and the National Science Foundation supported the research. The original article can be read at: pubs.acs.org/doi/abs/10.1021/nn800434d

####

For more information, please click here

Contacts:
Eric Mankin

213-821-1887

Copyright © University of Southern California

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Display technology/LEDs/SS Lighting/OLEDs

Environmentally friendly photoluminescent nanoparticles for more vivid display colors: Osaka University-led researchers created a new type of light-emitting nanoparticle that is made of ternary non-toxic semiconductors to help create displays and LED lighting with better colors t August 29th, 2018

Carbon in color: First-ever colored thin films of nanotubes created: A method developed at Aalto University, Finland, can produce large quantities of pristine single-walled carbon nanotubes in select shades of the rainbow; the secret is a fine-tuned fabrication process -- and a s August 29th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

DNA drives design principles for lighter, thinner optical displays: Lighter gold nanoparticles could replace thicker, heavier layered polymers used in displays’ back-reflectors June 27th, 2018

Chip Technology

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Nanoelectronics

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Laser sintering optimized for printed electronics: New study sheds (laser) light on the best means of laying down thin-film circuitry September 13th, 2018

September 5th, 2018

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

Discoveries

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Announcements

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Printing/Lithography/Inkjet/Inks/Bio-printing

Laser sintering optimized for printed electronics: New study sheds (laser) light on the best means of laying down thin-film circuitry September 13th, 2018

Virginia Tech researchers develop novel process to 3D print one of the strongest materials on Earth August 23rd, 2018

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

CTI Materials drives nano commercialization with it's patented surfactant free nanoparticle dispersions August 15th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project