Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Sniffing Out a Better Chemical Sensor

NIST researchers have developed a new approach for “electronic noses.” Comprised of 16 microheater elements and eight types of sensors, the tiny device could be a potent tool for applications such as sniffing out nerve agents, environmental contaminants, and trace indicators of disease, in addition to monitoring industrial processes and aiding in space exploration.

Credit: NIST
NIST researchers have developed a new approach for “electronic noses.” Comprised of 16 microheater elements and eight types of sensors, the tiny device could be a potent tool for applications such as sniffing out nerve agents, environmental contaminants, and trace indicators of disease, in addition to monitoring industrial processes and aiding in space exploration.

Credit: NIST

Abstract:
Marrying a sensitive detector technology capable of distinguishing hundreds of different chemical compounds with a pattern-recognition module that mimics the way animals recognize odors, researchers at the National Institute of Standards and Technology (NIST) have created a new approach for "electronic noses." Described in a recent paper,* their electronic nose is more adept than conventional methodologies at recognizing molecular features even for chemicals it has not been trained to detect and is also robust enough to deal with changes in sensor response that come with wear and tear. The detector could be a potent tool for applications such as sniffing out nerve agents, environmental contaminants, and trace indicators of disease, in addition to monitoring industrial processes and aiding in space exploration.

Sniffing Out a Better Chemical Sensor

GAITHERSBURG, MD | Posted on October 28th, 2008

In animals, odorant molecules in the air enter the nostrils and bind with sensory neurons in the nose that convert the chemical interactions into an electrical signal that the brain interprets as a smell. In humans, there are about 350 types of sensory neurons and many copies of each type; dogs and mice have several hundreds more types of sensory neurons than that. Odor recognition proceeds in a step-by-step fashion where the chemical identity is gradually resolved: initial coarse information (e.g. ice-cream is fruit-flavored vs. chocolate) is refined over time to allow finer discrimination (strawberry vs. raspberry). This biological approach inspired the researchers to develop a parallel "divide and conquer" method for use with the electronic nose.

The technology is based on interactions between chemical species and semiconducting sensing materials placed on top of MEMS microheater platforms developed at NIST. (See "NIST ‘Microhotplate' May Help Search for Extraterrestrial Life," NIST Tech Beat, Oct., 2001.) The electronic nose employed in the current work is comprised of eight types of sensors in the form of oxide films deposited on the surfaces of 16 microheaters, with two copies of each material. Precise control of the individual heating elements allows the scientists to treat each of them as a collection of "virtual" sensors at 350 temperature increments between 150 to 500 °C, increasing the number of sensors to about 5,600. The combination of the sensing films and the ability to vary the temperature gives the device the analytical equivalent of a snoot full of sensory neurons.

Much like people detect and remember many different smells and use that knowledge to generalize about smells they haven't encountered before, the electronic nose also needs to be trained to recognize the chemical signatures of different smells before it can deal with unknowns. The great advantage of this system, according to NIST researchers Barani Raman and Steve Semancik, is that you don't need to expose the array to every chemical it could come in contact with in order to recognize and/or classify them. Breaking the identification process down into simple, small, discrete steps using the most information rich data also avoids ‘noisy' portions of the sensor response, thereby incorporating robustness against the effects of sensor drift or aging.

The researchers say that they are continuing to work on applications involving rapid identification of chemicals in unknown backgrounds or in a complex cocktail.

* B. Raman, J. L. Hertz, K. D. Benkstein and S. Semancik. Bioinspired methodology for artificial olfaction. Analytical Chemistry. Published online Oct. 15, 2008.

####

About NIST
Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Mark Esser

(301) 975-8735

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Sensors

Leti’s Autonomous-Vehicle System Embedded in Infineon’s AURIX Platform: Leti’s Low-Power, Multi-Sensor System that Transforms Distance Data into Clear Information About the Driving Environment Will Be Demonstrated at ITS Meeting in Strasbourg, June 19-22 June 20th, 2017

New diode features optically controlled capacitance: Israeli researchers have developed a new optically tunable capacitor with embedded metal nanoparticles, creating a metal-insulator-semiconductor diode that is tunable by illumination. June 8th, 2017

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

Discoveries

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Announcements

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Homeland Security

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

Nanobionic spinach plants can detect explosives: After sensing dangerous chemicals, the carbon-nanotube-enhanced plants send an alert November 2nd, 2016

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Military

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Environment

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Can crab shells provide a 'green' solution to malaria? Study shows how a mixture of chitin and silver nanoparticles inhibits growth of mosquito larvae May 12th, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Wood filter removes toxic dye from water April 21st, 2017

Aerospace/Space

National Space Society and Cornell University's Cislunar Explorers Celebrate The Team's First Place Victory in NASA's Cube Quest Challenge June 15th, 2017

Space energy technology restored to make power stations more efficient: Scientists use graphene to reinvent abandoned heat energy converter technology March 7th, 2017

Applied Graphene Materials plc - Significant commercial progress in AGM’s three core sectors March 3rd, 2017

Triboelectric Nanogenerators Boost Mass Spectrometry Performance March 1st, 2017

Industrial

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Carbodeon demonstrates NanoDiamond nickel coatings with enhanced tribological properties June 7th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project