Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Spiraling nanotrees offer new twist on growth of nanowires

Abstract:
Since scientists first learned to make nanowires, the nano-sized wires just a few millionths of a centimeter thick have taken many forms, including nanobelts, nanocoils and nanoflowers.

Spiraling nanotrees offer new twist on growth of nanowires

Madison, WI | Posted on May 1st, 2008

But when University of Wisconsin-Madison chemistry professor Song Jin and graduate student Matthew Bierman accidentally made some pine tree shapes one day � complete with tall trunks and branches that tapered in length as they spiraled upward � they knew they�d stumbled upon something peculiar.

"At the beginning we saw just a couple of trees, and we said, "What the heck is going on here?" recalls Jin. "They were so curious."

Writing in the May 1 edition of Science Express, Jin and his team reveal just how curious the nanotrees truly are. In fact, they�re evidence of an entirely different way of growing nanowires, one that promises to give scientists a powerful means to create new and better nanomaterials for all sorts of applications, including high-performance integrated circuits, biosensors, solar cells, LEDs and lasers.

Until now, most nanowires have been made with metal catalysts, which promote the growth of nanomaterials along one dimension to form long rods. While the branches on Jin's trees also elongate in this way, growth of the trunks is driven by a 'screw' dislocation, or defect, in their crystal structure. At the top of the trunk, the defect provides a spiral step for atoms to settle on an otherwise perfect crystal face, causing them stack together in a spiral parking ramp-type structure that quickly lengthens the tip.

Dislocations are fundamental to the growth and characteristics of all crystalline materials, but this is the first time they've been shown to aid the growth of one-dimensional nanostructures. Engineering these defects, says Jin, may not only allow scientists to create more elaborate nanostructures, but also to investigate the fundamental mechanical, thermal and electronic properties of dislocations in materials.

His team created its nanotrees specifically by applying a slight variation of a synthesis technique called chemical vapor deposition to the material lead sulfide. But the chemists believe the new mechanism will be applicable to many other materials, as well.

"We think these findings will motivate a lot of people to do this purposefully, to design dislocation and try to grow nanowires around it," Jin says. "Or perhaps people who have grown a structure and were puzzled by it will read our paper and say, "Hey, we see something similar in our system, so maybe now we have the solution."

What initially puzzled Jin and his students about their pine tree structures was the long length of the trunks compared with the branches, a difference that indicated the trunks were growing much faster. The result was surprising because when complex, branching nanostructures are grown with metal catalysts, the branches are usually all of similar length because of similar growth rates, leading to boxy shapes rather than the cone-shapes of the trees.

Another oddity was the twist to the trunks, which sent the branches spiraling.

"The long and twisting trunks were telling us we had a new growth mode," says Jin. Suspecting dislocation, the team set about refining their technique for growing the pine trees - they soon learned to produce entire forests with ease - and then confirmed the presence of dislocations with a special type of transmission electron microscopy.

Upon closer examination, the twisting trunks and spiraling branches also turned out to embody a well-known general theory about the mechanical deformation of crystalline materials caused by screw dislocations. Although this so-called 'Eshelby twist' was first calculated back in 1953 and is discussed in many textbooks, Jin's experimental results likely offer the best support yet for the theory.

"These are beautiful, truly intriguing structures, but behind them is also a really beautiful, interesting science," says Jin. "Once you understand it, you just feel so satisfied."


The paper's other authors are Y.K. Albert Lau, Alexander Kvit and Andrew Schmitt. The work was funded by the National Science Foundation.

####

For more information, please click here

Contacts:
Song Jin

608-262-1562

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

Tel Aviv/Tsinghua University project uses crowd computing to improve water filtration: The research, a product of the new TAU-Tsinghua XIN Center, was conducted by 150,000 volunteers at IBM's World Community Grid July 6th, 2015

Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover July 6th, 2015

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

Display technology/LEDs/SS Lighting/OLEDs

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

Chip Technology

Fundamental observation of spin-controlled electrical conduction in metals: Ultrafast terahertz spectroscopy yields direct insight into the building block of modern magnetic memories July 6th, 2015

Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover July 6th, 2015

Nanometrics to Announce Second Quarter Financial Results on July 23, 2015 July 2nd, 2015

The quantum middle man July 2nd, 2015

Sensors

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

Nanoelectronics

Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover July 6th, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

Exagan Raises 5.7 Million to Produce High-efficiency GaN-on-Silicon Power-switching Devices on 200mm Wafers: Leti-and-Soitec Spinout Focused on Becoming Leading European Source Of GaN Devices for Solar, Automotive, Telecoms and Infrastructure June 25th, 2015

Nanowires could be the LEDs of the future June 25th, 2015

Discoveries

Fundamental observation of spin-controlled electrical conduction in metals: Ultrafast terahertz spectroscopy yields direct insight into the building block of modern magnetic memories July 6th, 2015

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover July 6th, 2015

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

Announcements

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

Tel Aviv/Tsinghua University project uses crowd computing to improve water filtration: The research, a product of the new TAU-Tsinghua XIN Center, was conducted by 150,000 volunteers at IBM's World Community Grid July 6th, 2015

Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover July 6th, 2015

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

Photonics/Optics/Lasers

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

Solar/Photovoltaic

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Spain nanotechnology featured at NANO KOREA 2015 June 26th, 2015

Stanford researchers stretch a thin crystal to get better solar cells June 25th, 2015

Toward tiny, solar-powered sensors: New ultralow-power circuit improves efficiency of energy harvesting to more than 80 percent June 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project