Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A New Technique for Building Nanodevices in the Lab: Electron beam "carves" the world's smallest devices

Abstract:
Physicists at the University of Pennsylvania are using a new technique to craft some of the tiniest metal nanostructures ever created, none larger than 10 nanometers, or 10,000 times smaller than the width of a single human hair.

A New Technique for Building Nanodevices in the Lab: Electron beam "carves" the world's smallest devices

Philadelphia, PA | Posted on June 18th, 2007

The technique employs transmission electron beam ablation lithography, or TEBAL, to "carve" nanostructures from thin sheets of gold, silver, aluminum and other metals. TEBAL provides a more dependable method for producing quality versions of these microscopic devices, which are studied for their novel mechanical properties and their potential use in next-generation sensors and electronics. The method also permits simultaneous, real-time atomic imaging of the devices as they are made.

Traditional techniques for building nanodevices employ electron beam lithography but also require the use of polymers and chemicals in which the metal is evaporated. Typical results are closer to 50 nanometers in size and rarely as small as 10.

Marija Drndi_, professor of physics at Penn, and her team created nanodisks, nanorings, nanowires, nanoholes and multi-terminal nano-transistors. The results were published in the journal Nano Letters.

"Many different approaches have been undertaken to fabricate the small structures needed to probe the phenomena that take place at the nanoscale, but the most widely used and versatile techniques are limited to tens of nanometers," Drndi_ said. "Reliably and consistently fabricating devices at the sub-10-nanometer scale from the top down is generally still challenging, but our technique offers a route to this regime."

Furthermore, the TEBAL method creates a resistance-free connection between the nanostructure and an electrical lead that might provide power to the device. The more parts involved, the greater the chance of a drop in electrical conduction between parts. Plus, structures made from bottom-up techniques, i.e., assembled from smaller components, typically first need to be placed on a chip and then connected to larger circuitry. Working with a single piece of metal means there are no additional parts to reduce efficiency.

The team used the superior control of the electron beam to reproduce multiple, identical copies of each structure. The ability to rapidly produce these tiny devices will provide the samples needed for a better understanding of the mechanical and conductive properties of metal at the molecular scale. Future research may lead to computer-based creation of such devices with more intricacy and faster production cycles.

Superconducting circuits, magnets and molecule-sized transistors are among the real-world applications that may result from this research. Penn physicists also propose that a more rapid method of DNA sequencing can be developed from this process, by threading DNA strands through an electronic "nanoport" that could read the base pairs that constitute a species' genetic code.

The study was conducted by Drndi_ and Michael Fischbein of Penn's Department of Physics in the School of Arts and Sciences.

The research was supported by funding from the Office of Naval Research and the National Science Foundation.

####

About University of Pennsylvania
Today Penn is home to a diverse undergraduate student body of nearly 10,000, hailing from every state in the union and all around the globe. Admissions are among the most selective in the country and Penn consistently ranks among the top 10 universities in the annual U.S. News & World Report survey. Another 10,000 students are enrolled in Penn's 12 graduate and professional schools, which are national leaders in their fields. The Wharton School is consistently one of the nation's top three business schools. The School of Nursing is one of the two best in the U.S. The School of Arts and Sciences, Graduate School of Education, Law School, School of Medicine, School of Veterinary Medicine, and Annenberg School for Communication all rank among the top 10 schools in their fields.

For more information, please click here

Contacts:
For general inquiries
call 215-898-8721.

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanoelectronics

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Discoveries

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanoparticles Display Ability to Improve Efficiency of Filters October 28th, 2014

Announcements

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

Tools

A new cheap and efficient method to improve SERS, an ultra-sensitive chemical detection technique October 28th, 2014

New Compact SIMS at 61st AVS | Visit us on Booth 311 October 28th, 2014

New nanodevice to improve cancer treatment monitoring October 27th, 2014

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE