Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Seeking the Next Kevlar: Penn Researchers Fine Tune Nanotube/Nylon Composite Using Carbon Spacers

Abstract:
A team of University of Pennsylvania and Rice University researchers have added a significant new step to the creation of materials fortified by single-walled carbon nanotubes, or SWNTs, resulting in a nylon polymer composite with greater strength and toughness and opening the door for researchers to broadly improve the mechanical properties of such composites at the molecular level.

Seeking the Next Kevlar: Penn Researchers Fine Tune Nanotube/Nylon Composite Using Carbon Spacers

Philadelphia, PA | Posted on April 4th, 2007

Starting with a method patented by engineers from Penn called interfacial polymerization, which evenly disperses carbon nanotubes throughout nylon, researchers have now fine tuned the composite material on a molecular level by introducing alkyl segments, or "carbon spacers." The carbon spacers act as linking segments, covalently bonding the nanotubes and nylon chains, improving both the toughness of the material and the strength. Previous attempts to create a carbon nanotube/nylon composite had resulted in a brittle material, a problem solved by the addition of these carbon spacers.

The resulting nanocomposites with the covalent bond exhibit as much as 160 percent higher modulus, 160 percent higher strength and 140 percent higher toughness.

"Nanotechnology is providing new composite materials with tunable mechanical properties," said Karen I. Winey, professor of materials science and engineering and also chemical and biomolecular engineering at Penn. "By adding covalently bonded carbon spacers to the filler-matrix interface in these composite, we have significantly improved their mechanical properties and perhaps demonstrated a broadly applicable approach to nanocomposite design."

The results, which could give scientists a new tool to customize nano-tube-laced materials to meet their particular needs, are reported by Winey and her colleagues online this week in the journal Nano Letters.

"Nanocomposites are likely to be more efficient methods for improving the mechanical, thermal and electrical properties of polymer than starting from scratch and synthesizing completely new ones," Winey said.

SWNTs are tubular-shaped molecules of carbon no wider than several nanometers. One nanometer is approximately 10 atoms in width; for comparison a single human hair is nearly 90,000 nanometers in diameter. Yet they are strong, light and show promise for advanced applications due to their mechanical, electrical and thermal properties. Nanotube-based composites have the potential to revolutionize fabrics, structural materials for aerospace, electrical and thermal conductors for energy applications, nano-biotechnology and other disciplines.

The study was conducted by Winey, as well as Mohammad Moniruzzaman of Penn's Department of Materials Science and Engineering and Jayanta Chattopadhyay and W. Edward Billups of the Department of Chemistry at Rice University.

The research was supported by the National Science Foundation and the Office of Naval Research.

####

For more information, please click here

Contacts:
Jordan Reese
215-573-6604

Copyright © University of Philadelphia

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanotubes/Buckyballs/Fullerenes/Nanorods

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

Nano-saturn: Supramolecular complex formation: Anthracene macrocycle and C60 fullerene June 8th, 2018

Unzipping graphene nanotubes into nanoribbons: New study shows elegant mathematical solution to understand how the flow of electrons changes when carbon nanotubes turn into zigzag nanoribbons June 6th, 2018

Making carbon nanotubes as usable as common plastics: Researchers discover that cresols disperse carbon nanotubes at unprecedentedly high concentrations May 15th, 2018

Discoveries

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Materials/Metamaterials

Relax, just break it July 20th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

Announcements

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

Military

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

High-power electronics keep their cool with new heat-conducting crystals July 6th, 2018

Textiles/Clothing

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Carbodeon demonstrates NanoDiamond nickel coatings with enhanced tribological properties June 7th, 2017

New ultrafast flexible and transparent memory devices could herald new era of electronics April 1st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project