Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


Home > Press > Magnetism flicks switch on "dark excitons"

Tests At Leading Magnetic Labs Shed Light On Nanotube Mystery

Magnetic Transistor Could "Dial In" Quantum Effects

Houston, TX | Posted on January 10, 2006

In new experimental research appearing in this week's issue of Physical Review Letters, a Rice University-led team of nanoscientists and electrical engineers has flipped the switch on "dark excitons" in carbon nanotubes by placing them inside a strong magnetic field.

The research offers new insight into the fundamental optical properties of semiconducting nanotubes, hollow straw-like molecules of pure carbon. Leading computing companies would like to use nanotubes as optical components in next-generation microchips that are faster, more powerful and more energy efficient.

"Single-walled carbon nanotubes offer engineers the intriguing possibility of building chips where electrical inputs can be converted into light and moved about the chip as optical signals rather than electrical signals," said lead researcher Junichiro Kono, associate professor of electrical and computer engineering at Rice. "Thus far, the poor optical performance of nanotubes - in some cases as few as one in 100,000 incoming photons causes a fluorescent emission - has prevented engineers from developing the technology for applications."

Kono said the new research may help scientists formulate new tests to answer some of the most perplexing questions about the optical properties of nanotubes. For example, scientists are currently debating whether low fluorescence efficiencies in nanotubes arise from the intrinsic physical structure of nanotubes or from external factors like structural defects and impurities. Some of the leading theories have the missing light disappearing into "dark" excitons - odd quantum pairings of electrons and electron "holes" that are forbidden by quantum rules from fluorescing. The new magnetic method of overcoming this dark exciton effect could be used to probe the intrinsic properties of nanotubes and help settle the debate.

The team tested materials in some of the world's most powerful magnetic fields. Experiments were conducted at both the Laboratoire National des Champs Magnétiques Pulsés in Toulouse, France, and at the National High Magnetic Field Laboratory at New Mexico's Los Alamos National Laboratory.

"We hope that our experimental methods will help better inform theorists and ultimately aid in the development of new devices with far superior functions than those based on existing technology," said Sasa Zaric, whose doctoral dissertation will be based on the work.

Nanotubes are a fraction of the size of transistors used in today's best microchips. As electronic components, nanotubes could reduce power demands and heating in next-generation chips. But as optical components they offer far more. The replacement of copper cables with fiberoptics revolutionized the volume and speed of data transmission in the telecom industry 20 years ago, and the parallels in microchips are tantalizing.

The research was funded by the Robert A. Welch Foundation and the National Science Foundation. Rice co-authors include electrical and computer engineering's Sasa Zaric, Gordana Ostojic and Jonah Shaver, and chemistry's Valerie Moore, Robert Hauge and Richard Smalley. Other co-authors include Oliver Portugall, Paul Frings and Geert Rikken, all of the Laboratoire National des Champs Magnétiques Pulsés in Toulouse, France; Madalina Furis and Scott Crooker of the National High Magnetic Field Laboratory at Los Alamos National Laboratory; and Xing Wei of the National High Magnetic Field Laboratory at Florida State University.


About Rice University:
Rice University is consistently ranked one of America's best teaching and research universities. It is distinguished by its: size: 2,850 undergraduates and 1,950 graduate students; selectivity: 10 applicants for each place in the freshman class; resources: an undergraduate student-to-faculty ratio of 6-to-1, and the fifth largest endowment per student among American universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work. Rice's wooded campus is located in the nation's fourth largest city and on America's South Coast.

For more information, please click here

Jade Boyd
(713) 348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Faster design -- better catalysts: New method facilitates research on fuel cell catalysts October 9th, 2015

Room temperature magnetic skyrmions, a new type of digital memory? October 8th, 2015

Purdue launching new quantum center during workshop October 8th, 2015

Could candle soot power electric vehicles? New research shows candle soot can power the lithium batteries in electric cars October 8th, 2015


Rice news release: Smaller is better for nanotube analysis: Rice University's variance spectroscopy technique advances nanoparticle analysis September 30th, 2015

Carbon Nanotubes Applied to Create Electrical Conductivity in Woolen Fabrics September 30th, 2015

Characterizing the forces that hold everything together: UMass Amherst physicists offer new open source calculations for molecular interactions September 23rd, 2015

UO research dollars climbed in FY 2015: Buoyed by an uptick in federal awards, the university saw gains in its overall sponsored research funding and continued high proposal counts in 2014-2015 September 17th, 2015


Room temperature magnetic skyrmions, a new type of digital memory? October 8th, 2015

Double the (quantum) fun: A detailed analysis of the electrical characteristics of a tiny transistor made from 2 quantum dots could help researchers design better devices to manipulate single electrons October 7th, 2015

First circularly polarized light detector on a silicon chip: Promises to expand use of polarized light for drug screening, surveillance, optical communications September 24th, 2015

Nanoelectronics could get a boost from carbon research: The smallest of electronics could one day have the ability to turn on and off on an atomic scale September 17th, 2015


Controllable protein gates deliver on-demand permeability in artificial nanovesicles October 9th, 2015

Faster design -- better catalysts: New method facilitates research on fuel cell catalysts October 9th, 2015

Performance of Polymeric Nanoparticles as Gene Carriers Studied by Iranian, Dutch Scientists October 9th, 2015

Newly discovered 'design rule' brings nature-inspired nanostructures one step closer: Computer sims and microscopy research at Berkeley Lab yield first atomic-resolution structure of a peptoid nanosheet October 8th, 2015

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

Car Brands
Buy website traffic