Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Purdue Researchers Use Enzyme To Clip 'DNA Wires'

Abstract:
Enzymatic Clipping of DNA Wires Coated with Magnetic Nanoparticles

Purdue Researchers Use Enzyme To Clip 'DNA Wires'

West Lafayette, IN | February 28, 2005

Researchers at Purdue University have attached magnetic "nanoparticles" to DNA and then cut these "DNA wires" into pieces, offering the promise of creating low-cost, self-assembling devices for future computers.

Findings are detailed in a paper published online in February in the Journal of the American Chemical Society. The paper was written by Purdue graduate student Joseph M. Kinsella and Albena Ivanisevic, an assistant professor of biomedical engineering and chemistry at Purdue.

DNA, or deoxyribonucleic acid, has an overall negative charge, so it might be used in a process called self-assembly to create electronic devices. When placed in a solution with magnetic particles that have a positive charge, the particles are automatically attracted to the DNA strands, which act as tiny scaffolds for creating wires.

Click for large version.
Part A of this graphic shows a procedure for "templating" magnetic iron oxide nanoparticles onto DNA and stretching the DNA using a technique called molecular combing. Part B is an image taken with an atomic force microscope that shows a DNA strand coated with magnetic iron oxide nanoparticles. Researchers at Purdue University have shown how to attach the nanoparticles to DNA and use a "restriction enzyme" to cut the resulting "DNA wires" into pieces, offering the promise of creating low-cost, self-assembling devices for future computers.

Courtesy Purdue University, Weldon School of Biomedical Engineering.

Other researchers have "metalized" DNA by coating it with copper, gold and platinum, but no other researchers have coated DNA and then cut the strands into smaller pieces using a "restriction enzyme," a class of enzyme that causes DNA to fragment, Kinsella said.

Because magnetic components are essential for today's computer memory, the findings represent potential future applications for DNA-based structures in computers created with "molecular electronics," in which biological molecules might be harnesses to create devices for computers, sensors and other uses. Self-assembly might be used in the future to create electronic devices at lower cost than is possible with conventional manufacturing processes.

Purdue researchers had previously developed a technique for precisely placing strands of DNA on a silicon chip and then stretching out the strands so that their encoded information might be read more clearly. The current work by Ivanisevic's team builds on that previous research.

Kinsella created the magnetic particles, which are made from a ceramic iron oxide material about 4 nanometers in diameter. A nanometer is one billionth of a meter, or roughly 10 times the size of a hydrogen atom.

The Purdue researchers sliced the DNA wires with an enzyme called BamH1, one of numerous restriction enzymes that are used in standard genetic engineering techniques to snip DNA so that scientists can alter the genetic structures of organisms like bacteria.

DNA molecules contain "bases" called guanine, adenine, thymine and cytosine, represented as G, A, T and C. The bases combine in numerous sequences, and various restriction enzymes attach to and cut specific sequences, enabling scientists to isolate and snip DNA segments of differing lengths. The enzyme used in the Purdue research cuts segments of DNA containing a sequence of GGATCC.

"We incubate the particles and DNA in a solution, and the electric charge brings them together to form the wire," Ivanisevic said. "Then we basically make smaller wire segments with magnetic particles attached to this DNA sequence."

Because hundreds of different restriction enzymes snip segments containing specific sequences of genetic material, the method might be used in the future to cut DNA wires of varying lengths for building electronic devices.

Ivanisevic and former Purdue physics graduate student Dorjderem Nyamjav were the first to coat DNA with magnetic particles two years ago. Kinsella and Ivanisevic are the first to show that the BamH1 enzyme cuts DNA wires.

"We weren't sure the enzyme would be able to recognize the DNA sequence covered with particles," Kinsella said. "We thought the particles might hinder the process."

The researchers found, however, that the particles did not interfere with the process, possibly because the electrical charges are strong enough to hold the particles firmly in place, but weak enough to enable the enzyme to push them out of the way.

"The entire strand of DNA used in this research has been stretched onto silicon oxide surfaces at lengths up to 35 microns, or millionths of a meter, and 2 nanometers wide," Kinsella said. "When coated with particles and fragmented by the enzyme, we were able to distinguish that the once-single DNA wire was clipped into smaller wires."

In future work, the Purdue researchers plan to stretch DNA coated with magnetic particles between electrodes and test the coated genetic material for electrical properties.

The research is funded by the National Aeronautics and Space Administration through Purdue's NASA Institute for Nanoelectronics and Computing. The institute is a collaboration of six universities led by Purdue, whose director is Supriyo Datta, the Thomas Duncan Distinguished Professor of Electrical and Computer Engineering at Purdue. The work also is affiliated with the Birck Nanotechnology Center and the Bindley Bioscience Center in Purdue's Discovery Park, the university's hub for high-tech research.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Sources: Joseph Kinsella, (765) 496-6431, jkinsel@purdue.edu

Albena Ivanisevic, (765) 496-3676, albena@purdue.edu



Contact:
Purdue University
News Service
400 Centennial Mall Drive, Rm. 324
West Lafayette, IN 47907-2016
(765) 494-2096
fax: (765) 49400401
purduenews@purdue.edu

Copyright Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

New method for analyzing crystal structure: Exotic materials called photonic crystals reveal their internal characteristics with new method November 30th, 2016

Molecular Machines

Micro-bubbles make big impact: Research team develops new ultrasound-powered actuator to develop micro robot November 25th, 2016

Scientists come up with light-driven motors to power nanorobots of the future: Researchers from Russia and Ukraine propose a nanosized motor controlled by a laser with potential applications across the natural sciences and medicine November 11th, 2016

HKU chemists develop world's first light-seeking synthetic Nanorobot November 9th, 2016

Light drives single-molecule nanoroadsters: Rice University scientists part of international team demonstrating untethered 3-wheelers November 4th, 2016

Self Assembly

Computers made of genetic material? HZDR researchers conduct electricity using DNA-based nanowires November 9th, 2016

First multicellular organism inspires the design of better cancer drugs September 15th, 2016

A versatile method to pattern functionalized nanowires: A team of researchers from Hokkaido University has developed a versatile method to pattern the structure of 'nanowires,' providing a new tool for the development of novel nanodevices September 9th, 2016

Location matters in the self-assembly of nanoclusters: Iowa State University scientists have developed a new formulation to explain an aspect of the self-assembly of nanoclusters on surfaces that has broad applications for nanotechnology September 8th, 2016

Nanoelectronics

Supersonic spray yields new nanomaterial for bendable, wearable electronics: Film of self-fused nanowires clear as glass, conducts like metal November 23rd, 2016

What a twist: Silicon nanoantennas turn light around: The theoretical results will allow scientists to design nanodevices with extraordinary features for use in optoelectronics November 21st, 2016

2-D material a brittle surprise: Rice University researchers finds molybdenum diselenide not as strong as they thought November 14th, 2016

UCR researchers discover new method to dissipate heat in electronic devices: By modulating the flow of phonons through semiconductor nanowires, engineers can create smaller and faster devices November 13th, 2016

Discoveries

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Announcements

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project