Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Purdue Researchers Use Enzyme To Clip 'DNA Wires'

Abstract:
Enzymatic Clipping of DNA Wires Coated with Magnetic Nanoparticles

Purdue Researchers Use Enzyme To Clip 'DNA Wires'

West Lafayette, IN | February 28, 2005

Researchers at Purdue University have attached magnetic "nanoparticles" to DNA and then cut these "DNA wires" into pieces, offering the promise of creating low-cost, self-assembling devices for future computers.

Findings are detailed in a paper published online in February in the Journal of the American Chemical Society. The paper was written by Purdue graduate student Joseph M. Kinsella and Albena Ivanisevic, an assistant professor of biomedical engineering and chemistry at Purdue.

DNA, or deoxyribonucleic acid, has an overall negative charge, so it might be used in a process called self-assembly to create electronic devices. When placed in a solution with magnetic particles that have a positive charge, the particles are automatically attracted to the DNA strands, which act as tiny scaffolds for creating wires.

Click for large version.
Part A of this graphic shows a procedure for "templating" magnetic iron oxide nanoparticles onto DNA and stretching the DNA using a technique called molecular combing. Part B is an image taken with an atomic force microscope that shows a DNA strand coated with magnetic iron oxide nanoparticles. Researchers at Purdue University have shown how to attach the nanoparticles to DNA and use a "restriction enzyme" to cut the resulting "DNA wires" into pieces, offering the promise of creating low-cost, self-assembling devices for future computers.

Courtesy Purdue University, Weldon School of Biomedical Engineering.

Other researchers have "metalized" DNA by coating it with copper, gold and platinum, but no other researchers have coated DNA and then cut the strands into smaller pieces using a "restriction enzyme," a class of enzyme that causes DNA to fragment, Kinsella said.

Because magnetic components are essential for today's computer memory, the findings represent potential future applications for DNA-based structures in computers created with "molecular electronics," in which biological molecules might be harnesses to create devices for computers, sensors and other uses. Self-assembly might be used in the future to create electronic devices at lower cost than is possible with conventional manufacturing processes.

Purdue researchers had previously developed a technique for precisely placing strands of DNA on a silicon chip and then stretching out the strands so that their encoded information might be read more clearly. The current work by Ivanisevic's team builds on that previous research.

Kinsella created the magnetic particles, which are made from a ceramic iron oxide material about 4 nanometers in diameter. A nanometer is one billionth of a meter, or roughly 10 times the size of a hydrogen atom.

The Purdue researchers sliced the DNA wires with an enzyme called BamH1, one of numerous restriction enzymes that are used in standard genetic engineering techniques to snip DNA so that scientists can alter the genetic structures of organisms like bacteria.

DNA molecules contain "bases" called guanine, adenine, thymine and cytosine, represented as G, A, T and C. The bases combine in numerous sequences, and various restriction enzymes attach to and cut specific sequences, enabling scientists to isolate and snip DNA segments of differing lengths. The enzyme used in the Purdue research cuts segments of DNA containing a sequence of GGATCC.

"We incubate the particles and DNA in a solution, and the electric charge brings them together to form the wire," Ivanisevic said. "Then we basically make smaller wire segments with magnetic particles attached to this DNA sequence."

Because hundreds of different restriction enzymes snip segments containing specific sequences of genetic material, the method might be used in the future to cut DNA wires of varying lengths for building electronic devices.

Ivanisevic and former Purdue physics graduate student Dorjderem Nyamjav were the first to coat DNA with magnetic particles two years ago. Kinsella and Ivanisevic are the first to show that the BamH1 enzyme cuts DNA wires.

"We weren't sure the enzyme would be able to recognize the DNA sequence covered with particles," Kinsella said. "We thought the particles might hinder the process."

The researchers found, however, that the particles did not interfere with the process, possibly because the electrical charges are strong enough to hold the particles firmly in place, but weak enough to enable the enzyme to push them out of the way.

"The entire strand of DNA used in this research has been stretched onto silicon oxide surfaces at lengths up to 35 microns, or millionths of a meter, and 2 nanometers wide," Kinsella said. "When coated with particles and fragmented by the enzyme, we were able to distinguish that the once-single DNA wire was clipped into smaller wires."

In future work, the Purdue researchers plan to stretch DNA coated with magnetic particles between electrodes and test the coated genetic material for electrical properties.

The research is funded by the National Aeronautics and Space Administration through Purdue's NASA Institute for Nanoelectronics and Computing. The institute is a collaboration of six universities led by Purdue, whose director is Supriyo Datta, the Thomas Duncan Distinguished Professor of Electrical and Computer Engineering at Purdue. The work also is affiliated with the Birck Nanotechnology Center and the Bindley Bioscience Center in Purdue's Discovery Park, the university's hub for high-tech research.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Sources: Joseph Kinsella, (765) 496-6431, jkinsel@purdue.edu

Albena Ivanisevic, (765) 496-3676, albena@purdue.edu



Contact:
Purdue University
News Service
400 Centennial Mall Drive, Rm. 324
West Lafayette, IN 47907-2016
(765) 494-2096
fax: (765) 49400401
purduenews@purdue.edu

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Molecular Machines

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Dartmouth researchers create 'green' process to reduce molecular switching waste December 15th, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Self Assembly

Revealed: How bacteria drill into our cells and kill them December 2nd, 2014

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Outsmarting Thermodynamics in Self-assembly of Nanostructures: Berkeley Lab reports method for symmetry-breaking in feedback-driven self-assembly of optical metamaterials November 4th, 2014

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Nanoelectronics

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Discoveries

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Announcements

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE