Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Purdue Researchers Use Enzyme To Clip 'DNA Wires'

Abstract:
Enzymatic Clipping of DNA Wires Coated with Magnetic Nanoparticles

Purdue Researchers Use Enzyme To Clip 'DNA Wires'

West Lafayette, IN | February 28, 2005

Researchers at Purdue University have attached magnetic "nanoparticles" to DNA and then cut these "DNA wires" into pieces, offering the promise of creating low-cost, self-assembling devices for future computers.

Findings are detailed in a paper published online in February in the Journal of the American Chemical Society. The paper was written by Purdue graduate student Joseph M. Kinsella and Albena Ivanisevic, an assistant professor of biomedical engineering and chemistry at Purdue.

DNA, or deoxyribonucleic acid, has an overall negative charge, so it might be used in a process called self-assembly to create electronic devices. When placed in a solution with magnetic particles that have a positive charge, the particles are automatically attracted to the DNA strands, which act as tiny scaffolds for creating wires.

Click for large version.
Part A of this graphic shows a procedure for "templating" magnetic iron oxide nanoparticles onto DNA and stretching the DNA using a technique called molecular combing. Part B is an image taken with an atomic force microscope that shows a DNA strand coated with magnetic iron oxide nanoparticles. Researchers at Purdue University have shown how to attach the nanoparticles to DNA and use a "restriction enzyme" to cut the resulting "DNA wires" into pieces, offering the promise of creating low-cost, self-assembling devices for future computers.

Courtesy Purdue University, Weldon School of Biomedical Engineering.

Other researchers have "metalized" DNA by coating it with copper, gold and platinum, but no other researchers have coated DNA and then cut the strands into smaller pieces using a "restriction enzyme," a class of enzyme that causes DNA to fragment, Kinsella said.

Because magnetic components are essential for today's computer memory, the findings represent potential future applications for DNA-based structures in computers created with "molecular electronics," in which biological molecules might be harnesses to create devices for computers, sensors and other uses. Self-assembly might be used in the future to create electronic devices at lower cost than is possible with conventional manufacturing processes.

Purdue researchers had previously developed a technique for precisely placing strands of DNA on a silicon chip and then stretching out the strands so that their encoded information might be read more clearly. The current work by Ivanisevic's team builds on that previous research.

Kinsella created the magnetic particles, which are made from a ceramic iron oxide material about 4 nanometers in diameter. A nanometer is one billionth of a meter, or roughly 10 times the size of a hydrogen atom.

The Purdue researchers sliced the DNA wires with an enzyme called BamH1, one of numerous restriction enzymes that are used in standard genetic engineering techniques to snip DNA so that scientists can alter the genetic structures of organisms like bacteria.

DNA molecules contain "bases" called guanine, adenine, thymine and cytosine, represented as G, A, T and C. The bases combine in numerous sequences, and various restriction enzymes attach to and cut specific sequences, enabling scientists to isolate and snip DNA segments of differing lengths. The enzyme used in the Purdue research cuts segments of DNA containing a sequence of GGATCC.

"We incubate the particles and DNA in a solution, and the electric charge brings them together to form the wire," Ivanisevic said. "Then we basically make smaller wire segments with magnetic particles attached to this DNA sequence."

Because hundreds of different restriction enzymes snip segments containing specific sequences of genetic material, the method might be used in the future to cut DNA wires of varying lengths for building electronic devices.

Ivanisevic and former Purdue physics graduate student Dorjderem Nyamjav were the first to coat DNA with magnetic particles two years ago. Kinsella and Ivanisevic are the first to show that the BamH1 enzyme cuts DNA wires.

"We weren't sure the enzyme would be able to recognize the DNA sequence covered with particles," Kinsella said. "We thought the particles might hinder the process."

The researchers found, however, that the particles did not interfere with the process, possibly because the electrical charges are strong enough to hold the particles firmly in place, but weak enough to enable the enzyme to push them out of the way.

"The entire strand of DNA used in this research has been stretched onto silicon oxide surfaces at lengths up to 35 microns, or millionths of a meter, and 2 nanometers wide," Kinsella said. "When coated with particles and fragmented by the enzyme, we were able to distinguish that the once-single DNA wire was clipped into smaller wires."

In future work, the Purdue researchers plan to stretch DNA coated with magnetic particles between electrodes and test the coated genetic material for electrical properties.

The research is funded by the National Aeronautics and Space Administration through Purdue's NASA Institute for Nanoelectronics and Computing. The institute is a collaboration of six universities led by Purdue, whose director is Supriyo Datta, the Thomas Duncan Distinguished Professor of Electrical and Computer Engineering at Purdue. The work also is affiliated with the Birck Nanotechnology Center and the Bindley Bioscience Center in Purdue's Discovery Park, the university's hub for high-tech research.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Sources: Joseph Kinsella, (765) 496-6431, jkinsel@purdue.edu

Albena Ivanisevic, (765) 496-3676, albena@purdue.edu



Contact:
Purdue University
News Service
400 Centennial Mall Drive, Rm. 324
West Lafayette, IN 47907-2016
(765) 494-2096
fax: (765) 49400401
purduenews@purdue.edu

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Leader Describes Iran's Independence as Root Cause of Bullying Powers' Enmity February 1st, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

Molecular Machines

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Mysteries of ‘Molecular Machines’ Revealed: Phenix software uses X-ray diffraction spots to produce 3-D image December 22nd, 2014

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Self Assembly

Engineering self-assembling amyloid fibers January 26th, 2015

Revealed: How bacteria drill into our cells and kill them December 2nd, 2014

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Outsmarting Thermodynamics in Self-assembly of Nanostructures: Berkeley Lab reports method for symmetry-breaking in feedback-driven self-assembly of optical metamaterials November 4th, 2014

Nanoelectronics

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

Rice-sized laser, powered one electron at a time, bodes well for quantum computing January 15th, 2015

Rapid journey through a crystal lattice: Researchers measure how fast electrons move through single atomic layers January 14th, 2015

A new step towards using graphene in electronic applications January 14th, 2015

Discoveries

Nanomaterials Used to Reduce Heat Generated by LED Panels February 1st, 2015

Performance Drop in Solar Cells Prevented by Nanotechnology February 1st, 2015

Pinholes are Pitfalls for High Performance Solar Cells February 1st, 2015

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Announcements

Why Is Google Making Synthetic Arms? February 1st, 2015

Nanomaterials Used to Reduce Heat Generated by LED Panels February 1st, 2015

Leader Describes Iran's Independence as Root Cause of Bullying Powers' Enmity February 1st, 2015

Performance Drop in Solar Cells Prevented by Nanotechnology February 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE