Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UCSB researchers discover living nanoscale 'necklace'

Abstract:
Researchers in physics and biology have made a discovery that could be instrumental in the production of miniaturized materials with many applications.

UC Santa Barbara researchers discover living nanoscale 'necklace'

Santa Barbara, CA November 08, 2004

In an interdisciplinary endeavor at the University of California, Santa Barbara, a team of researchers in physics and biology have made a discovery at the nanoscale level that could be instrumental in the production of miniaturized materials with many applications. Dubbed a "living necklace," the finding was completely unexpected.

This discovery could influence the development of vehicles for chemical, drug, and gene delivery, enzyme encapsulation systems and biosensors, circuitry components, as well as templates for nanosized wires and optical materials. The findings are reported in the November 16 issue of the Proceedings of the National Academy of Sciences and published online the week of November 8.

The collaborating labs are those of Cyrus Safinya, professor of materials and physics and faculty member of the Biomolecular Science & Engineering Program, and Leslie Wilson, professor of biochemistry in the Department of Molecular, Cellular and Developmental Biology. The first author of the paper is Safinya's graduate student Daniel Needleman. Postdoctoral researchers Uri Raviv and Miguel Ojeda-Lopez from Safinya's group and Herbert Miller, a researcher in Wilson's group, completed the team.

UCSB - Schematics of higher-order assembly of nanometer-scale microtubules.
Schematics of higher-order assembly of nanometer-scale microtubules. Courtesy and Copyright © UCSB. Click to emlarge.

The scientists studied microtubules from the brain tissue of a cow to understand the mechanisms leading to their assembly and shape. Microtubules are nanometer-scale hollow cylinders derived from cell cytoskeleton. In an organism, microtubules and their assembled structures are critical components in a broad range of cell functions -- from providing tracks for the transport of cargo to forming the spindle structure in cell division. Their functions include the transport of neurotransmitters in neurons. The mechanism of their assembly within an organism has been poorly understood.

In the paper, the researchers report the discovery of a new type of higher order assembly of microtubules. Positively-charged large, linear molecules (tri-, tetra- and penta-valent cations) resulted in a tightly bundled hexagonal grouping of microtubules a result that was predicted. But unexpectedly, the scientists found that small, spherical divalent cations caused the microtubules to assemble into a "necklace." They discovered distinct linear, branched and loop shaped necklaces.

Safinya and Needleman commented that from a formal theoretical physics perspective, the living necklace phase is the first experimental realization of a new type of membrane where the long microtubule molecules are oriented in the same direction but can diffuse within the living membrane.

They explained that the living necklace bundle is highly dynamic and that thermal fluctuations will cause it to change shape.

The scientists envision applications based on both the tight bundle and living necklace phases. For example, metallization of necklace bundles with different sizes and shapes would yield nanomaterials with controlled optical properties.

A more original application is in the area of using the assemblies encased by a lipid bilayer as drug or gene carriers where each nanotube may contain a distinct chemical, as noted by the team. In delivery applications the shape of the bundle determines its property. For example, the linear necklace phase with its higher surface to volume ratio would have a larger contact area and a faster delivery rate compared to the tight bundle phase.

The work was performed using state-of-the-art synchrotron x-ray scattering techniques at the Stanford Synchrotron Radiation Laboratory combined with sophisticated electron and optical microscopy at UCSB.


Cyrus Safinya can be reached by e-mail at safinya@mrl.ucsb.edu

Daniel Needleman can be reached at 805-893-7922 or by e-mail at needle@mrl.ucsb.edu

Contact:

Gail Gallessich
gail.g@ia.ucsb.edu
805-893-7220

Copyright UCSB

If you have a comment, please us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Department of Molecular, Cellular and Developmental Biology

Related News Press

Possible Futures

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Molecular Machines

Measuring the nanoworld September 4th, 2018

All wired up: New molecular wires for single-molecule electronic devices August 31st, 2018

Nanotubes change the shape of water: Rice University engineers show how water molecules square up in nanotubes HOUSTON August 24th, 2018

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

Nanomedicine

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

A Comprehensive Guide: The Future of Nanotechnology September 13th, 2018

Sensors

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

Measuring the nanoworld September 4th, 2018

Large scale preparation method of high quality SWNT sponges August 24th, 2018

Nanoelectronics

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Laser sintering optimized for printed electronics: New study sheds (laser) light on the best means of laying down thin-film circuitry September 13th, 2018

September 5th, 2018

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

Discoveries

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Announcements

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project