Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UCSB researchers discover living nanoscale 'necklace'

Abstract:
Researchers in physics and biology have made a discovery that could be instrumental in the production of miniaturized materials with many applications.

UC Santa Barbara researchers discover living nanoscale 'necklace'

Santa Barbara, CA November 08, 2004

In an interdisciplinary endeavor at the University of California, Santa Barbara, a team of researchers in physics and biology have made a discovery at the nanoscale level that could be instrumental in the production of miniaturized materials with many applications. Dubbed a "living necklace," the finding was completely unexpected.

This discovery could influence the development of vehicles for chemical, drug, and gene delivery, enzyme encapsulation systems and biosensors, circuitry components, as well as templates for nanosized wires and optical materials. The findings are reported in the November 16 issue of the Proceedings of the National Academy of Sciences and published online the week of November 8.

The collaborating labs are those of Cyrus Safinya, professor of materials and physics and faculty member of the Biomolecular Science & Engineering Program, and Leslie Wilson, professor of biochemistry in the Department of Molecular, Cellular and Developmental Biology. The first author of the paper is Safinya's graduate student Daniel Needleman. Postdoctoral researchers Uri Raviv and Miguel Ojeda-Lopez from Safinya's group and Herbert Miller, a researcher in Wilson's group, completed the team.

UCSB - Schematics of higher-order assembly of nanometer-scale microtubules.
Schematics of higher-order assembly of nanometer-scale microtubules. Courtesy and Copyright © UCSB. Click to emlarge.

The scientists studied microtubules from the brain tissue of a cow to understand the mechanisms leading to their assembly and shape. Microtubules are nanometer-scale hollow cylinders derived from cell cytoskeleton. In an organism, microtubules and their assembled structures are critical components in a broad range of cell functions -- from providing tracks for the transport of cargo to forming the spindle structure in cell division. Their functions include the transport of neurotransmitters in neurons. The mechanism of their assembly within an organism has been poorly understood.

In the paper, the researchers report the discovery of a new type of higher order assembly of microtubules. Positively-charged large, linear molecules (tri-, tetra- and penta-valent cations) resulted in a tightly bundled hexagonal grouping of microtubules a result that was predicted. But unexpectedly, the scientists found that small, spherical divalent cations caused the microtubules to assemble into a "necklace." They discovered distinct linear, branched and loop shaped necklaces.

Safinya and Needleman commented that from a formal theoretical physics perspective, the living necklace phase is the first experimental realization of a new type of membrane where the long microtubule molecules are oriented in the same direction but can diffuse within the living membrane.

They explained that the living necklace bundle is highly dynamic and that thermal fluctuations will cause it to change shape.

The scientists envision applications based on both the tight bundle and living necklace phases. For example, metallization of necklace bundles with different sizes and shapes would yield nanomaterials with controlled optical properties.

A more original application is in the area of using the assemblies encased by a lipid bilayer as drug or gene carriers where each nanotube may contain a distinct chemical, as noted by the team. In delivery applications the shape of the bundle determines its property. For example, the linear necklace phase with its higher surface to volume ratio would have a larger contact area and a faster delivery rate compared to the tight bundle phase.

The work was performed using state-of-the-art synchrotron x-ray scattering techniques at the Stanford Synchrotron Radiation Laboratory combined with sophisticated electron and optical microscopy at UCSB.


Cyrus Safinya can be reached by e-mail at safinya@mrl.ucsb.edu

Daniel Needleman can be reached at 805-893-7922 or by e-mail at needle@mrl.ucsb.edu

Contact:

Gail Gallessich
gail.g@ia.ucsb.edu
805-893-7220

Copyright UCSB

If you have a comment, please us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Department of Molecular, Cellular and Developmental Biology

Related News Press

Possible Futures

BBC World Service to broadcast Forum discussion on graphene July 6th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Global Nanoclays Market Analysis, Size, Growth, Trends And Segment Forecasts, 2015 To 2022: Grand View Research, Inc June 15th, 2015

Molecular Machines

Injectable electronics: New system holds promise for basic neuroscience, treatment of neuro-degenerative diseases June 8th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Nanomedicine

Miniature Technology, Large-Scale Impact: Winner of the 2015 Lindros Award for translational medicine, Kjeld Janssen is pushing the boundaries of the emerging lab-on-a-chip technology - See more at: http://www.news.ucsb.edu/2015/015744/miniature-technology-large-scale-impact#stha July 7th, 2015

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Sensors

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

Nanoelectronics

Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover July 6th, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

Exagan Raises 5.7 Million to Produce High-efficiency GaN-on-Silicon Power-switching Devices on 200mm Wafers: Leti-and-Soitec Spinout Focused on Becoming Leading European Source Of GaN Devices for Solar, Automotive, Telecoms and Infrastructure June 25th, 2015

Nanowires could be the LEDs of the future June 25th, 2015

Discoveries

Miniature Technology, Large-Scale Impact: Winner of the 2015 Lindros Award for translational medicine, Kjeld Janssen is pushing the boundaries of the emerging lab-on-a-chip technology - See more at: http://www.news.ucsb.edu/2015/015744/miniature-technology-large-scale-impact#stha July 7th, 2015

Fundamental observation of spin-controlled electrical conduction in metals: Ultrafast terahertz spectroscopy yields direct insight into the building block of modern magnetic memories July 6th, 2015

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover July 6th, 2015

Announcements

Miniature Technology, Large-Scale Impact: Winner of the 2015 Lindros Award for translational medicine, Kjeld Janssen is pushing the boundaries of the emerging lab-on-a-chip technology - See more at: http://www.news.ucsb.edu/2015/015744/miniature-technology-large-scale-impact#stha July 7th, 2015

Tel Aviv/Tsinghua University project uses crowd computing to improve water filtration: The research, a product of the new TAU-Tsinghua XIN Center, was conducted by 150,000 volunteers at IBM's World Community Grid July 6th, 2015

Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover July 6th, 2015

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project