Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UCSB researchers discover living nanoscale 'necklace'

Abstract:
Researchers in physics and biology have made a discovery that could be instrumental in the production of miniaturized materials with many applications.

UC Santa Barbara researchers discover living nanoscale 'necklace'

Santa Barbara, CA November 08, 2004

In an interdisciplinary endeavor at the University of California, Santa Barbara, a team of researchers in physics and biology have made a discovery at the nanoscale level that could be instrumental in the production of miniaturized materials with many applications. Dubbed a "living necklace," the finding was completely unexpected.

This discovery could influence the development of vehicles for chemical, drug, and gene delivery, enzyme encapsulation systems and biosensors, circuitry components, as well as templates for nanosized wires and optical materials. The findings are reported in the November 16 issue of the Proceedings of the National Academy of Sciences and published online the week of November 8.

The collaborating labs are those of Cyrus Safinya, professor of materials and physics and faculty member of the Biomolecular Science & Engineering Program, and Leslie Wilson, professor of biochemistry in the Department of Molecular, Cellular and Developmental Biology. The first author of the paper is Safinya's graduate student Daniel Needleman. Postdoctoral researchers Uri Raviv and Miguel Ojeda-Lopez from Safinya's group and Herbert Miller, a researcher in Wilson's group, completed the team.

UCSB - Schematics of higher-order assembly of nanometer-scale microtubules.
Schematics of higher-order assembly of nanometer-scale microtubules. Courtesy and Copyright © UCSB. Click to emlarge.

The scientists studied microtubules from the brain tissue of a cow to understand the mechanisms leading to their assembly and shape. Microtubules are nanometer-scale hollow cylinders derived from cell cytoskeleton. In an organism, microtubules and their assembled structures are critical components in a broad range of cell functions -- from providing tracks for the transport of cargo to forming the spindle structure in cell division. Their functions include the transport of neurotransmitters in neurons. The mechanism of their assembly within an organism has been poorly understood.

In the paper, the researchers report the discovery of a new type of higher order assembly of microtubules. Positively-charged large, linear molecules (tri-, tetra- and penta-valent cations) resulted in a tightly bundled hexagonal grouping of microtubules a result that was predicted. But unexpectedly, the scientists found that small, spherical divalent cations caused the microtubules to assemble into a "necklace." They discovered distinct linear, branched and loop shaped necklaces.

Safinya and Needleman commented that from a formal theoretical physics perspective, the living necklace phase is the first experimental realization of a new type of membrane where the long microtubule molecules are oriented in the same direction but can diffuse within the living membrane.

They explained that the living necklace bundle is highly dynamic and that thermal fluctuations will cause it to change shape.

The scientists envision applications based on both the tight bundle and living necklace phases. For example, metallization of necklace bundles with different sizes and shapes would yield nanomaterials with controlled optical properties.

A more original application is in the area of using the assemblies encased by a lipid bilayer as drug or gene carriers where each nanotube may contain a distinct chemical, as noted by the team. In delivery applications the shape of the bundle determines its property. For example, the linear necklace phase with its higher surface to volume ratio would have a larger contact area and a faster delivery rate compared to the tight bundle phase.

The work was performed using state-of-the-art synchrotron x-ray scattering techniques at the Stanford Synchrotron Radiation Laboratory combined with sophisticated electron and optical microscopy at UCSB.


Cyrus Safinya can be reached by e-mail at safinya@mrl.ucsb.edu

Daniel Needleman can be reached at 805-893-7922 or by e-mail at needle@mrl.ucsb.edu

Contact:

Gail Gallessich
gail.g@ia.ucsb.edu
805-893-7220

Copyright UCSB

If you have a comment, please us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Department of Molecular, Cellular and Developmental Biology

Related News Press

Possible Futures

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Nanotechnology Drug Delivery Market in the US 2012-2016 : Latest Report Available by Radiant Insights, Inc March 16th, 2015

Molecular Machines

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Tiny bio-robot is a germ suited-up with graphene quantum dots March 24th, 2015

New remote control for molecular motors: It is now theoretically possible to remotely control the direction in which magnetic molecules spin, which opens the door to designing applications based on molecular motors March 16th, 2015

Monitoring the real-time deformation of carbon nanocoils under axial loading February 18th, 2015

Nanomedicine

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

'Atomic chicken-wire' is key to faster DNA sequencing March 30th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Graphene reduces wear of alumina ceramic March 26th, 2015

Sensors

UW scientists build a nanolaser using a single atomic sheet March 24th, 2015

Iranian Researchers Present Model to Determine Dynamic Behavior of Nanostructures March 24th, 2015

Nanodevice Invented in Iran to Detect Hydrogen Sulfide in Oil, Gas Industry March 20th, 2015

LamdaGen Corporation Launches Taiwan Diagnostic Subsidiary March 19th, 2015

Nanoelectronics

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

UW scientists build a nanolaser using a single atomic sheet March 24th, 2015

Iranian Researchers Present Model to Determine Dynamic Behavior of Nanostructures March 24th, 2015

Sharper nanoscopy: What happens when a quantum dot looks in a mirror? March 19th, 2015

Discoveries

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

Tokyo Institute of Technology research: Catalyst redefines rate limitations in ammonia production March 30th, 2015

Next important step toward quantum computer: Scientists at the University of Bonn have succeeded in linking 2 different quantum systems March 30th, 2015

'Atomic chicken-wire' is key to faster DNA sequencing March 30th, 2015

Announcements

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

Tokyo Institute of Technology research: Catalyst redefines rate limitations in ammonia production March 30th, 2015

Next important step toward quantum computer: Scientists at the University of Bonn have succeeded in linking 2 different quantum systems March 30th, 2015

'Atomic chicken-wire' is key to faster DNA sequencing March 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE